모터를 벡터 제어 기법으로 구동하기 위해서는 3상의 모터 시스템을 벡터로 접근해야 하며 가장 쉽게 이해할 수 있는 abc 좌표계에서 구동에 필수적인 d-q 좌표계로의 변환과 그에 따른 모델링이 요구됩니다. 3상 모터의 전압이나 전류 그리고 자속을 벡터로 접근하는 근본적인 이유는 기구적으로 고정자 권선이 120˚ 간격으로 배치되었기 때문으로 전류를 예를 들어 전체 공간 벡터식으로 다음과 같이 나타낼 수 있습니다.
![](https://t1.daumcdn.net/cfile/tistory/2745BA38567EC90302)
여기서 a는 다음 그림에서와 같이 각 상의 120˚ 등간격의 기구적인 배치를 의미하는 것이며, 각 상의 전류 ia, ib, ic는 다음과 같이 표현할 수 있습니다. 여기서 a축 방향은 a상 권선에 의해 발생하는 자속의 방향을 의미합니다.
![](https://t1.daumcdn.net/cfile/tistory/2646CE4D56F0E72217)
![](https://t1.daumcdn.net/cfile/tistory/2637C835567EC8C42B)
위의 abc 좌표계에서 3상의 전류는 서로 120˚이 위상차를 가짐을 나타내며 위의 전류의 전체 공간 벡터식에 대입하고 이를 간략화하면 다음 식과 같습니다.
![](https://t1.daumcdn.net/cfile/tistory/23559F3A567ECD2201)
즉, 전류 공간 벡터는 abc 좌표계의 원점을 중심으로 겹쳐진 복소평면의 음의 허수부축에서부터 반시계 방향으로 회전하게 됩니다. 이는 3상 모터의 고정자 권선이 120˚ 간격의 배치된 상태에서 각 상에 120˚의 위상차를 갖는 정현파 전류의 인가로 발생하게 된다는 것입니다.
abc 좌표계에서 모터의 동특성 방정식은 다음과 같습니다. 여기서 총 쇄교 자속
입니다.
![](https://t1.daumcdn.net/cfile/tistory/2438174F567EA24136)
또한 abc 좌표계에서 쇄교 자속 방정식은 다음과 같습니다.
![](https://t1.daumcdn.net/cfile/tistory/211AC24E567EA4402C)
여기서 상호 인덕턴스는 대칭적(Lab = Lba)이고 인덕턴스는 angle(θ)에 따라 변하게 됩니다. 다음 식에서 보는 바와 같이 자기 인덕턴스는 회전자인 영구 자석의 자속의 방향과 고정자 권선의 자속이 일치할 때 최대이고, 상호 인덕턴스는 쇄교와 동상의 중간에서 최대가 됩니다. 즉, 회전자가 q축에 있을 때 자기 인덕턴스가 최대이고 d축과 q축 사이에서 상호 인덕턴스가 최대가 된다는 것입니다.
![](https://t1.daumcdn.net/cfile/tistory/2654363C567EA9440D)
Ls는 공극(air gap) 자기저항(reluctance)의 일정 성분으로
로 나타내는데, Lso는 토크를 생성하는 인덕턴스이고 Lsl는 고정자의 누설 인덕턴스입니다. 또한 Lx는 공극 자기저항의 정현적으로 변화하는 성분의 크기이며 IPM(Interior Permanent Magnet) 모터의 돌극성으로 인하여 2θ의 항으로 나타납니다. 상호 인덕턴스 Lab, Lbc, Lac에서 -1/2 계수는 각 상이 120˚ 간격으로 위치되어지고 따라서 cos(2π/3)=-1/2이며 반면에 고정자에서 쇄교 자속은 다음과 같습니다.
![](https://t1.daumcdn.net/cfile/tistory/223ABC37567EAC1034)
여기서 λ는 회전자인 영구 자석에 의한 고정자 권선의 쇄교 자속이고, θ는 여전히 a축과 d축의 전기각이며 입력 전력은 다음과 같습니다.
![](https://t1.daumcdn.net/cfile/tistory/275C5037567EACA118)
출력 전력과 출력 토크는 abc 좌표계에서 유도하기 어렵기 때문에 생략합니다. 위와 같은 모터의 동특성 방정식과 쇄교 자속 방정식 등은 d-q 좌표계로 변환할 필요가 있습니다. abc 좌표계에서 d-q 좌표계로 변환하는 행렬식은 다음과 같습니다.
![](https://t1.daumcdn.net/cfile/tistory/264AF150567EAEAD23)
또한 d-q 좌표계에서 다시 abc 좌표계로 변환하는 행렬식은 다음과 같습니다.
![](https://t1.daumcdn.net/cfile/tistory/255AE03C567EAF4625)
여기서는 전류를 변환하였지만 이외에도 전압, 쇄교 자속에 대해서도 동일하게 적용할 수 있습니다. 영축 I0는 영상분축이라고도 부르며 balanced 3상 시스템에서는 항상 '0'이 됩니다. 이는 전류, 전압 그리고 쇄교 자속 모두가 순시적인 합이 '0'이 되는 정현파 시스템이기 때문에 가능하다는 것입니다.
abc 좌표계에서 고정자 3상의 전압을 d-q 좌표계로 변환하면 vd와 vq는 va, vb 그리고 vc로 나타낼 수 있고 이를 동특성 방정식을 이용하여 ia, ib, ic 그리고 λa, λb, λc 변수들에 의한 식으로 전개합니다. 그리고 d-q 좌표계에서 abc 좌표계로의 위 행렬 변환식으로부터 3상의 전류 i와 쇄교 자속 λ를 d-q 좌표계에서의 전류 id, iq 그리고 쇄교 자속 λd, λq에 의한 식으로 다음과 같이 정리할 수 있습니다.
![](https://t1.daumcdn.net/cfile/tistory/2309C935567EB3D50E)
여기서 d-q 좌표계의 쇄교 자속 λd과 λq는 다음과 같습니다. 회전자의 자속은 d축과 일치(d축과 a축의 전기각이 0)하도록 변환하였으므로 q축 상의 자속에 영구 자석으로부터의 기여는 없게 됩니다.
![](https://t1.daumcdn.net/cfile/tistory/225E4638567EB4B217)
여기서 Lq와 Ld는 각각 q축과 d축에 동기화된 자기 인덕턴스라 부르고 다음과 같이 정의됩니다.
![](https://t1.daumcdn.net/cfile/tistory/2310EF33567EB9E725)
동기 인덕턴스는 3상 balanced 조건에서 유효 인덕턴스가 되고 각 동기 인덕턴스는 누설 인덕턴스를 포함한 자기 인덕턴스와 다른 2상으로부터의 기여로 이루어집니다. Ls는 평균 인덕턴스로 Ls = (Lq + Ld)/2 이고 Lx는 인덕턴스 변화분(fluctuation)으로 Lx = (Lq – Ld)/2입니다. 그러므로 d-q 좌표계에서의 동특성 방정식은 다음과 같이 정리할 수 있습니다.
![](https://t1.daumcdn.net/cfile/tistory/214D5539567EB7BD0F)
순시 전력은 abc 좌표계에서 입력 전력으로 각 상에 대한 전압 va,vb, vc 그리고 ia, ib, ic를 d-q 좌표계의 전압 vd, vq와 전류 id, iq로 변환하여 대입하면 다음과 같습니다.
![](https://t1.daumcdn.net/cfile/tistory/227D803B567EBFF02C)
모터의 전기적인 토크는 자속과 전류에 비례하므로 다음과 같습니다.
![](https://t1.daumcdn.net/cfile/tistory/251EC336567FFD1901)
여기서 K는 관련상수이며, 이를 d-q 좌표계의 쇄교 자속과 전류로 나타내면 다음과 같습니다.
![](https://t1.daumcdn.net/cfile/tistory/276C76345680014E20)
여기서 P는 모터의 극(pole)수입니다. 자속의 시정수가 전류의 시정수보다 훨씬 커서 순시적으로 자속이 일정하다고 가정하면, 이 때 λq=0가 되어 토크는
(K는 관련 상수)이 됩니다. 위에서 d-q 좌표계의 자속 λd, λq 식을 대입하면 다음과 간략화 됩니다.
![](https://t1.daumcdn.net/cfile/tistory/24562F4D568001F817)
만일 d축의 전류 id를 0으로 제어한다면 다음과 같이 간략화됩니다. SPM(Surface Permanent Magnet)의 경우에 항상 공극의 인덕턴스는 일정하므로 Lq=Ld=Ls가 되지만, IPM의 경우는 Lq>Ld가 되어 영구 자석의 자속의 방향과 고정자 권선의 자속이 일치시키더라도 전류 id를 반드시 0으로 제어하여야 합니다. 하지만 적당한 id와 iq를 흘려 추가적인 릴럭턴스 토크(reluctance torque)를 얻을 수도 있습니다.
![](https://t1.daumcdn.net/cfile/tistory/271766395699F60C1B)
여기서
이고, 기계적인 토크식은 다음과 같습니다.
![](https://t1.daumcdn.net/cfile/tistory/25622939568004C802)
여기서
,
이고, J는 회전자의 관성 모멘트, B는 점성 마찰 계수, TL은 부하 토크입니다. 전기적인 토크 Te와 기계적인 토크 Tm은 일치해야 하므로 위 방정식으로 부터 다음과 같습니다.
![](https://t1.daumcdn.net/cfile/tistory/2609BF37568006602D)
위 식으로부터 PMSM의 d-q 좌표계에서의 상태(동특성) 방정식은 다음과 같이 정리할 수 있습니다.
![](https://t1.daumcdn.net/cfile/tistory/274DB93556800AB608)