'BLAC'에 해당되는 글 2건

  1. 2015.12.12 모터의 토크 발생원리 2
  2. 2015.12.09 BLDC vs. PMSM


다음 그림은 DC 모터의 토크 발생 원리를 설명하기 위한 개념도입니다.



위 그림과 같이 DC 모터에 전압 v를 인가하여 권선에 전류 i가 흐를 경우, 발생할 토크(회전력)는 위와 같이 플레밍(Fleming)의 왼손 법칙에 의하여 다음과 같습니다. 여기서 2는 회전축을 중심으로 같은 힘 F가 토크에 기여하기 때문이며 F는 로렌쯔(Lorentz)의 힘입니다.

τ = 2rF = 2ri(l x B)

그러므로 선분 ad와 bc는 위치에 따라서 힘이 작용할 수는 있지만 토크에는 기여하지 못하고, 선분 ab와 cd에서만 회전에 기여하는 토크가 발생합니다. 한편 페러데이(Faraday) 법칙에 의해서 기전력(electromagnet force) e는 다음과 같습니다. 여기서 속도 v = dx/dt = rdθ/dt = rω이고 ω는 각속도입니다. 





e = -dψ/dt = -BdA/dt = -Bldx/dt = -Blv = -Blrω

권선 길이 l 성분은 자속 밀도 B와 수직하므로 유도 기전력을 사용하여 토크의 크기를 다시 나타내면 다음과 같습니다. 결국 회전자를 영구 자석으로 고려하면 고정자 권선에 걸리는 역기전력은 오직 각속도에 비례함을 알 수 있습니다.

τ = 2rF = 2rilB = 2/ωei

따라서 토크는 고정자 권선에 흐르는 전류에 비례하고, 회전자의 회전으로 인해 고정자 권선에 유기된 역기전력에 비례함을 나타냅니다.


교류 모터의 원리


영구 자석이 회전하는 BLDC 모터나 PMSM를 고려하면 자속 밀도 B가 변화하므로 토크는 다음과 같이 쓸 수 있습니다. 

τ = 2rilBsinθ

고정자 권선에 i라는 전류가 흐르면, 권선이 이루는 면에 수직으로 발생하는 자속 밀도 Bs의 크기는 암페어(Ampere) 법칙에 의해서 전류 i에 비례하므로 Bs = Gi라 하면 다음과 같이 됩니다. 단, G는 루프의 형태와 관련된 상수입니다.

τ = 2rilBsinθ = 2rl/G·Bs·Bsinθ

여기서 k = 2rl/G라 하여 기기의 구조에 의존하는 값으로 정의하면 일반적인 토크는 다음과 같이 나타낼 수 있습니다.

τ = k·Bs·Bsinθ = k·(Bs×B)

그러므로 토크는 권선에 의한 자속 밀도와 영구 자석에 의한 자속 밀도의 방향이 쇄교(orthogonal, perpendicular)할 때 최대가 되고 같을 때 0이 됩니다. 이는 두 자계의 방향이 서로 일치하려는 작용에 의해 토크가 발생하고 회전자의 자계가 고정자의 자계와 일치하는 방향으로 토크가 발생한다는 것입니다. 위 그림에서 θ가 0도인 경우는 회전 토크에 기여하지 못하는 것으로 다른 말로 쇄교하는 자속 밀도가 시간에 따라 변화가 없어 역기전력은 0이 되어 토크가 없다고 의미와 같습니다.


다음 그림에서 고정자 b에 전류를 인가하면 영구 자석의 N 혹은 S극이 b상으로 정렬되고 이때 힘(인력) F는 최대이지만 회전자의 회전에는 전혀 기여하지 않게 됩니다. 소위 고정자의 자계가 회전한다면, 회전자에서 고정자 자계를 따라가기 위해 토크가 계속 발생하는 것이 모터의 회전 원리라는 것입니다.




위의 원리는 회전자인 영구 자석 대신에 이를 권선으로 대치한 유도(Induced) 모터에도 같은 원리가 적용되고 요약하면 다음과 같습니다. 여기서 k'에 관련된 상수입니다.

τ = k·(Bs×B) = k'/ω·e·i

      • [abc 상(좌표계) 관점에서] 토크는 고정자 권선에 의한 자속 밀도와 회전자 영구 자석에 의한 자속 밀도의 방향이 쇄교(90˚)할 때 최대가 됩니다.

      • [시간의 관점에서] 토크는 고정자 권선에 전류가 클수록 그리고 역기전력이 클수록 그리고 회전 속도가 작을수록 커지게 됩니다. 


이는 DC 모터의 정상상태 방정식 V = Ri + Ldi/dt + e으로부터 고정자에 일정한 전류 i가 인가된 정상상태에서 전류를 증가시키면 토크가 증가하여 회전 속도가 증가하지만 이로 인해 역기전력이 증가하고 상대적으로 고정자에 권선에 걸리는 전압의 감소는 전류의 감소로 이어저 결국 주어진 전류에 토크(회전 속도)는 균형을 이루게 됩니다.


요약하면, 회전하는 모터의 고정자를 손으로 정지시키면 고정자의 권선에 흐르는 전류가 증가하여 토크가 증가하는데, 이는 회전하려는 힘이 스스로 증가하려는 것으로 전형적인 DC 모터의 특성이며, PMSM을 포함하는 BLDC 모터를 '-DC'로 표현하는 것은 DC 모터의 특성을 닮았기 때문입니다.


3상(abc)의 고정자 권선을 가지는 유도 전동기나 PMSM을 포함한 BLDC 모터를 최대의 토크를 유지하며 구동하기 위해서는 abc 좌표계에서 회전자에서 발생하는 자속 밀도가 고정자에서 발생하는 자속 밀도와 항상 쇄교(90˚)하도록 해야 하며, 이는 타임 도메인(시변 좌표계)에서 회전자의 회전으로 인해 고정자 권선에 유기되는 역기전력과 고정자 권선에 인가되는 전류가 동상(in phase)이 되도록 해야 한다는 의미입니다.



※ 플레밍(Fleming)의 법칙


유도기전력의 방향


전기가 흐르는 도체가 받는 힘





'Flight Controller 이해 > 모터제어이론' 카테고리의 다른 글

토크 제어와 자속 기준 제어(FOC)  (0) 2015.12.23
모터의 회전자계  (1) 2015.12.17
BLDC와 PMSM의 구조  (0) 2015.12.12
BLDC와 PMSM의 토크  (0) 2015.12.10
BLDC vs. PMSM  (0) 2015.12.09
Posted by Nature & Life


Drone의 기체에 추력을 내기 위해서 사용되는 모터는 그동안 BLDC(Brushless Direct Current) 모터가 주류를 이루었지만, 후술되는 장점으로 인하여 최근에는 PMSM(Permanent Magnet Synchronous Motor)으로 교체되는 추세에 있습니다. BLDC 모터와 PMSM 두 모터는 회전자(rotator)가 영구자석(permanent magnet)으로 3상인 기본적인 구조는 유사하며, 주된 차이는 모터가 회전시 각각 역기전력(Back EMF)이 사다리꼴파(Trapzoidal)와 정현파(Sinusoidal)라는 것입니다.


넓은 의미에서 BLDC 모터(BLDCM)는 PMSM을 포함하며 일반적인 DC 모터와의 장점은 이전글인 'BLDC의 장단점'을 참조하시기 바랍니다. 모터의 회전원리는 쉽게 말해 영구자석으로 이루진 회전자는 전류를 공급하는 3상의 권선이 감겨져 있는 고정자(stator)에 전원을 회전자계가 발생하도록 적절히 공급하고, 이때 회전자는 고정자의 회전자계와 동기화(Syncronous)되어 회전하게 된다는 것입니다. 


이와 같이 전원을 공급하는 경우, BLDC는 6-step commutation이라는 전기각의 매 60도 간격으로 전류의 크기와 방향을 바꾸는 스칼라 제어(Scalar 제어)를 사용하는 반변에, PMSM에서는 공간벡터제어(Space Vector Control)라는 기법으로 전체 사이클에 대해서 전류의 크기와 방향을 제어하여, 토크(torque) 직접제어가 가능하고, 속도제어, 위치제어 등에서 탁월한 성능을 발휘한다는 것입니다. FOC(Field-Oriented Control)로 알려진 공간벡터제어(Space Vector Control) 기법으로 구동되는 PMSM을 BLAC(Brushless AC)로 부르기도 합니다.


다음은 BLDC 모터와 PMSM의 차이입니다.


 

BLDC

PMSM

권선형태

대부분 집중권(concentrating winding)

각 상을 분산시킨(pole 수를 증가시킨) 분산권(distributed winding)

용도

고토크, 고속도 제어

고효율, [위치제어] 정밀 서보

 인버터 효율

High

Low

모터 효율

Low

High

모터 비용

Low

Medium

역기전력 & 전류

사다리꼴파 & 구형파

모두 정현파

제어방식

6-step trapzoidal 방식의 비교적 간편한 스칼라 제어(scalar control)

 - 전류 제어 및 토크 최적화 불가능

 - 느린 응답

 - 저속 및 고속에서 토크 전달이 비효율적

 - 낮은 토크에서 비효율적

 - 저속에서 뛰어나지만 내부 손실이 많다

 - 저속에서 개방제어로 큰 부하에서 가속이 어렵다

 - 고속에서 제어가 상대적으로 어렵다

 - 6-step 방식으로 토크리플(맥동 토크) 발생

 - 가청 소음(잡음)이 있다

 - 발열이 있어 영구자석이 자성을 잃으면 토크가 감소한다

 - 분배 와인딩에서 작동하지 않음

 - 낮은 비용

연속 3상 정현파의 비교적 복잡한 벡터 제어(vector control) 혹은 FOC(Field-Oriented Control)

 - 시작시 최대 토크

 - 전류로 제어

 - 속도와 토크의 독립적인 제어

 - 최대 토크와 속도 범위에서 최적의 제어 가능

 - 높은 토크에서 비교적 높은 효율

 - set point나 연속 부하 변화에 부드럽고 상대적으로 빨리 반응하고 토크, 속도, 위치를 맟힐 수 있다

 - 상대적으로 높은 최대 가능 속도

 - 120도 위상차를 갖는 3상의 정현파의 합은 동일하므로 토크는 일정

 - 연속 정현파 곡선제어에 기반하여 잡음이 적다

 - 저비용 분배 와인딩에서 작동

 - 전기적인 브레이크와 홀드

 - 낮은 발열

 - 보다 효율적인 전력 사용

 - 비교적 높은 비용

 - 모터 설정이 복잡하다

Sensorless Drive

Low to Medium

High




6-step보다 많은 상태를 이용해 위치를 제어할수록 위치 정밀성과 알고리즘 복잡성도 높아집니다



'Flight Controller 이해 > 모터제어이론' 카테고리의 다른 글

모터의 토크 발생원리  (2) 2015.12.12
BLDC와 PMSM의 구조  (0) 2015.12.12
BLDC와 PMSM의 토크  (0) 2015.12.10
BLDC의 장단점  (0) 2014.04.03
BLDC모터란?  (0) 2014.04.01
Posted by Nature & Life