'릴럭턴스'에 해당되는 글 2건

  1. 2016.02.26 전기회로 vs. 자기회로 5
  2. 2016.01.27 릴럭턴스 토크 1


전기회로(electrical circuit)에서 전류를 구하는 방법과 유사하게 자성체 각 부분의 자속을 구하기 위해 회로를 구성할 수 있는데 이를 자기회로(magnetic circuit)라고 부릅니다. 일반적으로 권선수 N인 철심의 평균길이를 lc, 단면적을 Ac, 권선의 유입전류를 I라 하면 순(net) 전류에 의해 발생되는 자계와의 관계를 나타내는 암페어(Ampere) 법칙은 다음과 같습니다.



코어의 투자율이 무한하거나 유한하더라도 주변 물질보다 많이 크면 자기장은 코어 내부에 제한되고 권선의 방향과 수직한 성분만 존재하며 다음과 같습니다. 실제로 자기회로는 다음의 문제들이 있다는 것입니다.

1) 모든 자속은 코어(철심)내로만 흐르지만 무한한 투자율을 갖지 못하고 코어 외부와의 유한한 투자율 차이로 누설자속(leakage flux)이 존재합니다.
2) 자기저항의 계산시 평균 길이로 계산하는데 이는 특히 사각철심일 경우 코너부분처럼 구조에 따라 부정확하기 때문입니다.
3) 강자성체에서 투자율은 자속의 크기에 따라 달라진다는 것입니다.
4) 공극을 갖는 코어의 경우 fringing 효과에 의해서 유효 단면적이 달라집니다.
5) 공극을 통하여 자속이 흐를 때 기자력이 감소합니다.





전류와 자속은 각각 다음과 같습니다.



여기서 Rm은 전기저항 R과 유사한 자기저항(magnetic resistance) 혹은 릴럭턴스(magnetic reluctance)이며, F는 자속을 발생하는 힘인 기자력(Magneto-motive Force; mmf)으로 기전력(Electro-motive Force; emf)과 대비됩니다. 그리고 전류밀도와 자속밀도는 각각 다음과 같습니다.



여기서 H는 외부로부터 인가되는 자계(자기장; 자화력)의 세기(Magnetic Field Intensity)이고 μ는 투자율(permeability)로 의 관계를 가지며 μr은 해당 물질의 비투자율(relative permeability)을 의미합니다. 그리고 전기저항과 자기저항은 각각 다음과 같습니다.



여기서 σ는 전자가 흐르는 정도를 나타내는 도전율(conductivity)이고 마찬가지로 투자율 μ는 자속을 투과시키는 정도(B/H) 혹은 외부로부터 인가되는 자장의 세기에 대한 자속의 발생 능력을 의미합니다. 따라서 자기회로에서도 오옴(ohm)의 법칙과 Kirchhoff의 법칙이 상보적(쌍대관계)으로 적용될 수 있습니다. 그러나 자기회로에서는 대표적으로 자기 포화(magnetic saturation)와 히스테레시스(hysteresis), fringing 효과 등의 현상이 존재합니다.



만일 코어에 두께가 g인 공극이 존재하고 코어의 투자율이 주변 공기의 투자율에 비해 매우 크다고 가정하면, 자기장은 공극을 제외하고는 코어에 갇히게 되어 공극에서의 자기저항은 다음과 같습니다. 이 경우에 공극의 릴럭턴스는 코어의 릴럭턴스와 전기회로에서와 같이 직렬연결된 것이 되고 등가저항도 전기회로에서와 같이 직렬회로에 준하여 합이 됩니다.



자기회로와 전기회로의 유사성은 저항을 통한 전류흐름은 에너지를 소모하고 릴럭턴스를 통한 자속의 흐름은 에너지를 저장하는데 있다는 것입니다.


부록 A. 여러가지 물질의 비투자율



부록 B. 자성체의 구분



'Flight Controller 이해 > 모터제어이론' 카테고리의 다른 글

Start up with BLDC(PMSM) - variable inductive sense  (0) 2018.01.19
Start up with BLDC(PMSM) - align and go  (2) 2018.01.18
SPM vs. IPM  (1) 2016.02.26
PMSM의 모델식  (0) 2016.02.26
PMSM의 토크 제어 방법  (0) 2016.01.28
Posted by Nature & Life


모터의 고정자(솔레노이드) 권선 내부에 축적되는 자기에너지(magnetic energy)는 다음과 같습니다.



여기서 이고 토크(회전력)는 회전축에서 거리 r만큼 떨어져 작용함을 나타내는 위치벡터와 가한 힘 F로 그리고 시간에 따른 각운동량(angular momentum)의 변화량으로 나타내면 토크는 다음과 같습니다.



여기서 각운동량을 선운동량 p로 연관지으면 이 되고 선운동량(linear momentum)은 p=mv의 관계가 있는데 m은 물체의 질량이고 v는 물체의 속도로 시간에 따른 선운동량의 변화인 dp/dt는 힘 F가 됩니다. 또한 일정한 토크로 물체를 θ만큼 회전시킨 경우 한 일 W는 W=Tθ인 관계가 성립하므로 고정자 권선 내부에 저장된 자기에너지가 모두 운동에너지(kinetic energy)로 전환되었다면 토크 Te는 회전자의 위치각 θ에 대한 편미분항으로서 다음과 같이 나타낼 수 있습니다.



그러므로 토크는 전류의 제곱에 비례하고 위치각에 대한 인덕턴스의 기울기에 비례함을 알 수 있습니다. 게다가 인덕턴스의 기울기에 따라서 토크의 부호가 달라지게 합니다. 결론적으로 인턱턴스(릴럭턴스) 변화로 토크를 얻는 것을 릴럭턴스 모터라 부릅니다.



영구 자석인 회전자가 고정자 상과 일치하지 않으면 자속의 경로는 길어지게 되고 이는 높은 자기저항(릴릭턴스)를 의미합니다. 반면에 일치하는 경우에는 자속의 경로는 짧아저 낮은 자기저항을 갖게 되는데, 이때 자속의 원천은 권선 내부에 저장된 자기에너지이며 자기에너지를 운동에너지로 쉽게 전환하기 위해서 자극 S, N에 상관없이 자기저항이 낮은 경로를 갖도록 회전자를 움직이게 하는 경향이 있다는 것입니다. (자기저항은 공극이 작아지면, 동일한 전류로 더 큰 쇄교자속을 얻을 수 있다는 것입니다)




PMSM의 모델식으로 토크는 다음과 같습니다.



돌극비(Lq/Ld)가 1보다 큰 IPM 모터를 만일 q축 성분의 전류만을 가지고 토크를 제어(id=0)하지 않으면 d축 성분의 전류로 인하여 q축과의 위상차인 β가 존재하며 이 때의 전류벡터를 ia라 놓을 수 있습니다. 다음 그림은 d-q 좌표계에서 전압방정식을 나타낸 것입니다.



여기서 r은 권선의 저항이며 회전에 의한 φq, φd의 미소변화를 고려하면 다음 그림에서와 같이 방향에 대해서는 Δθ→0의 극한을 고려하면 Δφd는 q축 방향으로, Δφq는 음의 d축 방향으로 향하고 있어 Δφd=Δθxφd, Δφq=Δθxφq의 벡터 방향을 결정하여 다음과 같습니다.



이를 고정자 권선 가운데를 자속이 회전하므로서 발생하는 기전력이며 속도기전력이라고 부릅니다. 



이 속도기전력은 자속 φ에 대하여 90˚ 진각(advance) 위상벡터(j를 곱하여 위상 90˚만큼 빠르게 함)를 ω배 한 것으로 ωφm, ωLdid, ωLqiq이며 이들 총화가 Vo이며, Vo에 전기자 권선 저항의 전압강하 ria을 더한 것이 단자전압 Va가 됩니다인 관계가 있으므로 다시 위의 PMSM의 토크식에 이를 대입하여 정리하면 다음과 같습니다.



오른쪽 제1항은 마그네트 토크(magnetic torque)를 나타내고, 제2항은 d축 자속경로와 q축 자속경로의 자기저항 차이에 의해서 발생하는 소위 돌극성에 의해 발생하는 릴럭턴스 토크(reluctance torque)를 나타냅니다. 다음 그림은 이들 토크와 전발생 토크(전체 토크)를 보여줍니다.



위 그림에서 전류가 일정한 상태에서 전류 위상 β를 변화시킬 때의 마그네틱 토크는 β=0°에서 최대가 되고, β=180°에서 음의 최대가 되며, 릴럭턴스 토크는 β=45°, -135°에서 최대인 2배의 주파수를 가지는데, 그 결과로 전발생 토크는 전류 위상 0°<β<45° 범위에서 약 20% 정도 증가한 최대가 되며 135°<β<180°에서 음의 최대 토크가 된다는 것입니다. 이와 같이 β를 변화시키는 방식을 전류위상제어라고 부르며 전류벡터를 부하 조건에 맞게 적절히 선택함으로서 넓은 부하범위에서 고성능 운전을 가능하게 한다는 것입니다.



'Flight Controller 이해 > 모터제어이론' 카테고리의 다른 글

PMSM의 모델식  (0) 2016.02.26
PMSM의 토크 제어 방법  (0) 2016.01.28
Clarke vs. Park 변환  (4) 2015.12.24
토크 제어와 자속 기준 제어(FOC)  (0) 2015.12.23
모터의 회전자계  (1) 2015.12.17
Posted by Nature & Life