'ATmega328'에 해당되는 글 7건

  1. 2018.01.12 Arduino vs. mbed 1
  2. 2017.03.20 아날로그 출력(PWM)
  3. 2017.03.18 아날로그 입력
  4. 2017.03.11 Arduino Uno R3의 개요
  5. 2017.03.07 비행제어기(FC)란?
  6. 2014.05.27 아두이노(Ardunio)의 장점(2)
  7. 2014.03.27 아두이노(Ardunio)의 장점(1)


영국의 ARM사가 주도하는 mbed는 ARM-cortex기반의 MCU를 사용하여 IoT제품이나 여러 전자제품의 프로토타이핑(prototyping)을 쉽게 제작하고 Cloud 서비스 테스트까지 할수 있는 플랫폼으로, Arduino와 같은 해에 시작하고 2009년에 베타서비스를 시작했지만 2013년에야 mbed를 오픈하기로 결정하고 주변 디바이스, API, 기판 설계 데이터, 펌웨어 등을 공개하면서 주목받기 시작하였습니다.



사실 기존에는 Arduino라는 가볍고 쉬운 AVR이 존재했지만 ARM 계열에서는 Arduino Due 제외하고는 가볍고 쉬운 AVR은 없었고 대부분 전문 컴파일러를 사용하여 제작하였기 때문에 전문가가 아니면 사용하기가 어려웠었습니다. 그렇기 때문에 ARM에서도 Arduino와 같이 접근성이 좋고 빠르게 개발이 가능하도록 만든 소프트웨어가 바로 "mbed"라는 것입니다. 아직까지 국내에서는 Arduino보다 인지도가 적은 편이지만 Ardunio보다 더 좋은 성능으로 IoT개발 보드 시장 영역을 넓혀가고 있다는 것입니다.


참고로 ARM사의 cortex-M4를 MCU의 경우에는 IoT에서 가장 중요한 화두인 전력문제에 있어서 저전력기술을 활용함으로써, 100~180MHz로 동작하는 동안 매우 낮은 동적 전력 사용량을 제공하며, 경쟁사 유사제품에 비해 7배 낮은 정적 소비 전력을 보여줍니다. 


웹브라우저를 통한 온라인 컴파일 및 소스 버전 관리 기능(Web-IDE)을 제공하여 어떤 OS에서든 웹브라우저에서 온라인으로 컴파일이 가능하고, 프로그램 업로드는 별도 장비없이 USB에 연결만 하면 가능하도록 되어 있다는 것입니다. 게다가 커뮤니티를 통한 라이브러리 공개 및 방대한 개인 위키 페이지 제공으로 협업에 유익하고 무엇보다, 모든 사용자가 기본적으로 같은 하드웨어를 이용하고 있기에 확장 보드가 아닌 이상 바로 적용 가능하다는 것입니다.



mbed의 장점으로는 기본적으로 MCU의 성능이 Arduino보다 좋기 때문에 고성능으로 더 높은 사양대를 커버할 수 있지만, Ardunio에 비해 상대적으로 사용자가 적다는 단점이 있습니다. 온라인 컴파일러에서 브레이크 포인터를 사용하여 스텝별 실행 및 내부 레지스터, 변수 등의 디버깅은 불가능하고 프로그램 업로드 방식에 있어서도 파일을 추출하고 이 파일을 다시 보드에 업로드 시켜야하는 상대적으로 Arduino에 비해 귀찮은 과정도 단점으로 여겨질 수 있습니다.


Arduino와 mbed 차이점으로, 모든 Arduino는 Atmel MCU 사용하여 작은 메모리와 제한된 기능을 가지고 있으며 느리다는 것입니다. 대부분의 Arduino 보드들은 ATmega328이고, Mega보드는 ATmega2560이며, 새로운 Due보드는 ARM Cortex-M3를 사용한다. 반면에 mbed 플랫폼은 더 빠르고, 메모리도 크고, 더 많은 기능을 가진 ARM Cortex MCU를 사용합니다. 사실 공식적인 mbed 플랫폼들은 Cortex-M0, M3와 M4를 기반으로 만들어진다는 것입니다.


프로토타입을 만드는데는 둘 다 우수하지만 프로토타입을 만든 후에 생산을 하고자 할 때는 mbed가 더 scalable한 플랫폼이기 때문에 더 낮고, 아주 간단한 응용제품을 제외하고는 ARM MCU들이 같거나 더 싼 가격에 더 낮은 전력 소모를 하며, 더 많은 기능을 가지고 있기 때문에 그 입지가 점점 좁아지고 있다는 것입니다.



Posted by Nature & Life
Embedded Lecture/Arduino2017. 3. 20. 21:03


Arduino Uno 보드의 디지털 핀은 '1'과 '0'의 진리값만을 출력할 수 있습니다. Uno 보드의 전원 전압이 5V이라면 'HIGH' 값으로 5V 그리고 'LOW' 값으로 0V를 출력한다는 것입니다. 그렇다면 아날로그 물리량은 나타낼 수가 없는 것일까요? 디지털 값을 아날로그 물리량으로 나타낼 수 있는 것이 있는데, 이를 DAC(Digital to Analog Converter)라 부릅니다. 하지만 Uno 보드의 메인칩인 ATmega328은 이 DAC를 탑재하지 않습니다(정교한 아날로그 물리량의 표현이 요구된다면 외장 DAC를 사용할 수 있습니다).


그렇다면 외부에서 DAC를 사용해야 하지만 정밀한 아날로그 물리량을 요구하지 않는 경우에, Uno 보드의 PWM 기능을 이용하여 아날로그 물리량을 표현할 수 있다는 것입니다. PWM(Pulse Width Modulation, 펄스 폭 변조)이란 5V와 0V를 교대로 이루어진 구형파(펄스) 신호를 출력하고 5V인 구간의 폭을 구형파 주기 내에서 변화시킴으로서 외부에서는 마치 0~5V까지 변하는 것처럼 보이게 한다는 것입이다.



위 그림에서 모든 구형파의 주기(T)는 동일하지만 출력이 HIGH인 구간인 구형파의 폭(width)이 점점 증가합니다. 만일 외부에서 디지털 출력 핀을 바라다 볼 때, 구형파의 주기(T)가 충분히 작거나 혹은 주파수(f=1/T)가 충분히 높다면, 구형파의 HIGH인 구간의 폭을 증가시킴에 따라 출력 전압도 증가하는 것처럼 보일 것입니다. 


즉, 이 구형파의 주파수를 높게 하면 상대적으로 반응 속도가 느린 모터 등과 같은 기계 장치는 이것을 아날로그 전압으로 착각하게 된다는 것입니다. 이 주파수는 Uno인 경우 490Hz 혹은 980Hz이며, HIGH인 구간 대비 LOW인 구간의 비율을 듀티비(Duty)라 부릅니다. Arduino의 모든 핀이 PWM 출력을 낼 수 있는 것은 아닙니다. Uno 보드의 경우 3, 5, 6, 9, 10, 11번 핀이 PWM 출력을 낼 수 있으며 보드상에 '~'로 표시됩니다. 이와 같은 디지털 핀의 펄스 폭 변조는 굳이 메인칩이 PWM 기능을 제공하지 않더라도 펌웨어 상에서 구현할 수 있습니다. 그러나 인터럽트나 CPU 타임을 일정부분 할애하기 때문에 코딩이 복잡해지고 효율성이 떨어지게 됩니다.



Uno 보드의 PWM의 동작 주파수는 다음과 같습니다. 

        • 3, 9, 10, 11번 핀 - 490Hz

        • 5, 6번 핀 – 980Hz


Uno 보드의 PWM 기능을 사용하기 위해서는 analogWrite() 함수를 이용하는데, 첫 번째 인수는 아날로그 핀의 번호(3, 5, 6, 9, 10, 11 중 하나)이며 두번째 인수는 0~255 사이의 정수로써 256 레벨의 듀티비를 의미합니다.



Posted by Nature & Life
Embedded Lecture/Arduino2017. 3. 18. 17:19


Arduino Uno 보드의 A0~A5까지 6개의 핀을 이용하여 아날로그 입력을 받을 수 있습니다. 디지털 핀은 '0'과 '1'의 논리적 값만을 받을 수 있는 것과는 달리, 아날로그 입력은 전압을 그대로 읽고 이를 1024개의 레벨로 구분하고 0~1023 중의 정수값으로 읽어들인다는 것입니다.



이것이 가능한 이유는 ATmega328 칩 내부에는 10bit A/D 컨버터(analog-to-digital converter, ADC)를 내장하고 있기 때문이며, 2^10=1024개의 레벨로 구분할 수 있다는 것은 이 컨버터의 분해능(resolution)이 전원전압 5V를 기준으로 0.0049V(4.9mV = 5V/1024)라는 말이며, 아날로그 전압을 읽어들이는 명령은 analogRead() 함수입니다.


ananlogRead(pin)


인수로는 아날로그 입력 핀의 번호를 지정하고 반환값은 int 형으로 0~1023 값 중의 하나가 됩니다. 이때 입력 핀은 0~5 혹은 A0~A5, 14~19로 지정할 수 있으며, 여기서 핀 번호 0과 A0, 14는 같은 핀을 의미합니다. A/D 변환 시간은 100us인데, 이는 사실 느린 편으로 간단한 비교만을 원할 때는 칩 내부에 포함된 빠른 비교기(comparator)를 대신 사용하게 됩니다. 아날로그 핀은 디지털 핀과 달리 기본적으로 입력으로 설정되어 있으므로 별도로 입력을 설정하는 과정이 필요 없습니다.


아날로그 핀에 연결된 A/D Converter(혹은 ADC)의 기준 전압을 바꿀 수 있는데, 이때 analogReference() 함수를 사용합니다.


ananlogReference(type)

  

A/D Converter의 기준 전압은 아날로그 입력값이 1023으로 읽히는 최대 전압 값을 의미합니다. 위 함수로 지정하지 않으면 디폴트(DEFAULT)로 Arduino의 동작 전압이며, 외부 전압(EXTERNAL)을 사용할 경우에는 아날로그 핀의 전압을 읽기 전에 반드시 미리 설정해야 합니다. 내부 전압(INTERNAL) 1.1V를 사용할 경우에 가장 안정된 기준전압을 제공함을 기억해야 합니다.


DEFAULT : Arduino의 동작 전압(Uno는 5V 이고 보드에 따라서 3.3V일 수도 있습니다.)

INTERNAL : 내장 전압 (Uno는 1.1V)

EXTERNAL : AREF핀에 인가된 전압 (0~ 5V 사이어야 함니다)


INTERNAL로 설정되어 기준 전압이 1.1V이면 디폴트보다 더 높은 분해능(0.0011V)을 얻을 수 있습니다. 만일 3.3V를 기준 전압으로 사용하고 싶다면 Arduino Uno 보드상의 3.3V핀과 AREF 핀을 연결 후 EXTERNAL 옵션을 설정하면 됩니다. 이 경우에 분해능은 0.0032V로 분해능이 개선될 수 있습니다. 보드의 3.3V 핀은 7~12V의 외부 전원을 연결한 경우 뿐만 아니라 USB만 연결한 경우에도 레귤레이터(regulator)를 사용하여 정확히 3.3V 전압을 출력합니다. 만일 Uno 보드의 동작 전압인 5V보다 높은 전압을 읽을 경우에는 외부에서 [정밀] 저항으로 voltage divider를 결선해야 합니다.



'Embedded Lecture > Arduino' 카테고리의 다른 글

아날로그 출력(PWM)  (0) 2017.03.20
아날로그 입력 및 온도계 예제  (0) 2017.03.19
인터럽트와 volatile 지시자  (1) 2017.03.18
아두이노의 TWI(I2C) 통신  (0) 2017.03.18
아두이노의 시리얼 통신  (0) 2017.03.18
Posted by Nature & Life


Arduino Uno R3는 가장 널리 사용되는 입문용 기본 보드로 R3는 세번째 버젼을 의미합니다. 이 보드는 8-bit 마이크로 콘트롤러인 ATmega328P을 탑재하며 PC와 USB로 연결할 수 있어 프로그램 다운로드 및 시리얼 통신에 가능합니다. 그 밖에도 ATmega16U2의 또 다른 마이크로 콘트롤러를 내장하는데, 이는 기존 보드들에서 사용하던 FTDI FT232R USB-to-Serial 드라이버 칩을 대체하기 위한 것으로 USB-to-Serial 변환 프로그램이 들어 있습니다. ATmega328P는 1KB의 부트로터(Bootloader)용을 포함한 32KB의 Flash 메모리와 2KB의 SRAM, 1KB의 EEPROM을 갖고 있으며, 클럭 속도(Clock speed)는 16MHz입니다.


5V로 동작하는 이 Uno 보드의 전원공급은 두 가지 방법이 있는데, 첫번째는 USB로부터 제공되는 5V를 그대로 사용할 수 있으며, 두번째로는 7~12V의 AC 어댑터를 잭에 꼽아 외부에서 공급하는 방법인데 이는 Uno 보드가 내부적으로 5V를 정류하는 레귤레이터(Regulator)를 내장하고 있기 때문이며 위의 두 가지 전원이 모두 연결되어 있다면 외부 전원이 우선이 됩니다.



디지털 입출력 핀 14개 (0번~13번)

디지털 입출력 핀들을 이용해서 외부의 이진 신호를 읽어들어나 또는 이진 신호를 내보낼 수 있다. 디지털 입출력으로 사용되면서 또한 다른 기능을 가지는 핀들이 있는데, 이 기능들은 한 핀으로 두가지를 다 사용할 수는 없으며 다른 기능은 다음과 같습니다.

    • 0번~1번: 시리얼 통신에 사용되어 USB로 PC와 통신을 할 수 있습니다.

    • 2번~3번: 인터럽트(interrupt) 기능을 갖습니다.

    • 3, 5, 6, 9, 10, 11번 핀은 PWM 기능을 가지며 아날로그 출력을 흉내낼 수 있다.


아날로그 입력 핀 6개 (A0~A5)

외부의 아날로그 입력값을 읽어들여 ATmega328P칩 내부의 ADC(Analog to Digital Converter)를 이용하여 0~1023 사이의 숫자로 변환합니다. 이때 필요한 기준 전압은 5V 이지만 1.1V의 내부 전압이 사용될 수 있으며 AREF핀으로 기준 전압을 직접 인가할 수도 있습니다. 그리고 아날로그 핀은 디지털 입출력 핀으로도 사용할 수 있습니다.


아날로그 출력핀 6개 (3,5,6,9,10,11번 핀)

아날로그 출력핀은 0~5V사이의 전압 값(256레벨)을 가질 수 있으며 이는 PWM(Pulse Width Modulation) 방식으로 동작하므로 흉내를 내는 것입니다.


인터럽트 (2, 3번 핀)

2번과 3번 핀에 가해진 외부 이벤트를 감지하여 사용자가 원하는 방향으로 이를 처리하기 위한 기능으로 이를 인터럽트 처리(interrupt handling)라 부르는데, 즉 이 핀들에 변화가 있는면 하드웨어는 즉각적으로 알리고 이때 사용자가 원하는 정해진 동작을 코딩하여 사용합니다.



ICSP for ATmega328 : 기존의 ATmega328P에 ICSP(In Circuit Serial Programming)를 위한 SPI 통신용 6핀 포트입니다. ICSP는 전통적으로 마이크로 컨트롤러에 직접 펌웨어를 프로그래밍하기 위해 마련된 것입니다.


ICSP for USB interface : 기존의 ATmega16U2에 ICSP(In Circuit Serial Programming)를 위한 SPI 통신용 6핀 포트입니다. 


TWI(I2C) 통신 : A0, A1 핀




Posted by Nature & Life


과거 모형 헬기와 같은 전통적 RC는 메인 로터가 양력을 얻어 부양하고 메인 로터가 회전할 때 회전각에 따른 로터의 피치를 조절하여 헬기가 원하는 방향으로 나아가는데, 메인 로터로 인한 헬기 동체의 반동 토크를 상쇄시킬 목적으로 테일 로터도 함께 회전시키게 됩니다(안정성을 강조한 동축반전 헬기는 제외). 이때 헬기 동체가 정숙하게 방향성을 유지하고 호버링하거나 이동하기 위해서는 자이로(gyroscope) 센서의 도움을 받아 실시간 보상하였는데, 이것이 사실 비행 자동화의 전부였으며 나머지는 오직 조종자의 오랜 비행 경험을 토대로 한 자동 반사적인 키감에 의존하여 매우 역동적인 스포츠를 즐기게 되었습니다.


반면에 드론은 쿼드콥터를 예를 들어, 4개의 프로펠러로 양력을 얻고 원하는 방향으로 나아가기 위해서는 개별 로터의 회전속도를 정교히 제어해야 하는데 이는 컴퓨터의 도움없이는 거의 불가능하다는 것입니다. 이러한 이유로 드론의 비행제어기(FC; Flight Controller)는 사람의 심장과도 유사하여 수신모듈로 부터 수신된 명령 신호를 처리하여 각 암(ARM)의 모터를 제어하고, 게다가 가속도계/자이로 센서를 포함하는 관성측정장치(IMU), 바로미터, 컴파스/지자계 등의 센서 데이터를 기반으로 안정적인 비행이 가능하도록 한다는 것입니다.


최근에는 GPS 센서를 탑재하여 GPS 데이터에 기반하여 사전에 입력된 경유지(waypoint)를 순차적으로 운항하거나 RTL(Return to Launch)라는 자동 회귀 기능 등의 탑재로 조종자의 명령이나 각종 기체 이상 등을 감지하여 이륙 장소로 스스로 귀환시키거나, 영상 및 소리 센서들을 활용한 충돌회피 등등 다양한 기능들이 추가되면서 FC는 날로 매우 빠른 연산을 수행하는 MCU가 필요한 추세라는 것입니다.


이를 증명하듯 수 년전에는 오픈 소스에 기반한 APM(AutoPilot Mega) 보드나 multiwii 보드는 8bit 16MHz의 ATmega328이나 ATmega2560의 MCU가 사용되었는데, 그 후로 AruPilot의 PixHawk(3DR)은 훨씬 강력한 32bit 168MHz의 STMicro사의 ARM Cortex M4를 사용하게 되었습니다. 현재의 오픈 소스의 드론 플랫폼으로 가장 인기있는 PX4는 64bit quad-core 2.26GHz의 퀄컴사 SOC(System on Chip) 기반 스냅드래곤 SOC(System on Chip)을 채용하고 있는 실정입니다.



사실 드론이 안정적인 비행으로 대중화를 선언한 그 이면에는 고성능의 MCU 채용만큼이나 FC에서 중요한 것은 센서 기술의 진화에 있다고 해도 지나치지 않다라는 것입니다. 각종 센서들로부터 드론은 비행 속도/각도, 좌표, 위치 데이타 등을 실시간으로 MCU에 제공하여 상당히 안정적인 비행을 가능하게 하지만, 최근에는 저고도에서의 정확한 고도 유지와 포지션홀드 기능을 위해 초음파센서, 옵티컬플루우(Optical Flow) 센서 등이 사용되고 있으며, 또한 충돌회피를 위해 카메라 센서 기반한 SLAM(SImultaneous Localization and Mapping)등의 알고리즘들이 활발히 연구되고 있다는 것입니다.



Posted by Nature & Life


아두이노(Arduino)가 오픈 소스 플랫폼으로 자리잡은 이유는 AVR 칩이 제공하는 Self-programming 기능으로 거슬러 올라갑니다. Self-programming 기능이란 칩의 퓨즈를 적절히 설정함으로써 부팅시 Application 영역이 아닌 Boot 영역으로 시작 지점이 변경된다는 것입니다.



한편, AVR 칩은 추가적인 하드웨어 구성 없이 USART나 TWI, SPI 등으로 통신이 가능한데, 칩이 Boot 영역에서 수신된 데이터를 감지하고 Application 영역을 변경할 수 있다는 것입니다. 이러한 기능은 3세대 AVR 칩에서 등장하여 펌웨어의 유지 및 보수 목적으로 특히 가혹한 원격지에서 펌웨어 업그레이드에 유연성을 주기 위함이었습니다.


따라서 이러한 기능이 가능하게끔 작성된 Bootloader를 최초 한번 JTAG이나 ISP를 이용하여 펌웨어를 프로그래밍을 하면 아두이노는 그 다음부터 ISP 없이 USART로 프로그램의 간단히 업로드가 가능하게 됩니다. 결국 아두이노 보드는 아래 회로도에서와 같이 별도의 ATmega16U2 칩을 이용해 USB로 데이터를 송수신하고, 이를 다시 ATmega328 칩에 USART 규격으로 통신하는 구조를 가집니다.



요약하면 아두이노 IDE 환경은 AVR 칩에 최초 Bootloader를 탑재하여 PC의 USB 포트로 C 코드인 스케치(Sketch) 파일을 컴파일하고 이를 아두이노 보드로 추가의 하드웨어 없이 전송하여 쉽고 빠른 개발환경을 제공한다는 것입니다. 게다가 아두이노 IDE 환경에서 함께 제공하는 Serial Monitor를 이용해서 클릭 한번으로 그 결과를 바로 확인할 수 있다는 장점을 가집니다.





Posted by Nature & Life


 

아두이노(Arduino)는 오픈 소스(Open Source)를 기반으로 한 단일 보드(board) 마이크로 컨트롤러입니다. 2005년 이탈리아 사람에 의해서 최초 만들어지기 시작한 프로젝트로 현재에도 진행 중에 있으며 Arduino는 이탈리아어로 영어의 'Best Friend'와 같은 의미를 가진다고 알려집니다.

 

아두이노는 대부분 Atmel社의 ATmega8이나 ATmega32U4, ATmega168, ATmega328, ATmega2560 등을 탑재한 보드로 이들 마이크로 컨트롤러에 탑재할 펌웨어(Firmware)를 개발하는 환경에서부터 컴파일 및 독립적으로 작동할 수 있도록 업로드 과정이 편리하여 최근에 전 세계적으로 인기를 끌고 있습니다. 

 

2011년에는 구글의 안드로이드(Android)가 아두이노를 하드웨어 파트너로 선택한 이유도 이런 확장성과 편리함 때문에 상호간에 시너지 효과를 기대해 보자는 것으로 풀이되며, 이러한 추세에 힘입어 얼마전에는 Intel社에서도 아두이노 플랫폼에 자사의 Quark Processor를 탑재한 갈릴레오(Galilo)를 출시하였는데, 이러한 것도 내내 동일한 맥락이라는 것입니다.

 

갈릴레오 보드

 

하드웨어에 서툰 사람들조차도 아두아노에 관심을 가지게 만드는 이유는 요구하는 제품이 기존의 AVR의 개발환경에 비하여 뚜렷하게 간소화됨으로 말미암아 편리함일 수도 있지만, 이러한 과정들이 복잡하지 않아 소프트웨어 제작이나 다양한 하드웨어 DIY(Do It Yourself)를 즐기는 사람들에게 호기심을 불러 일으키기에 충분하였기 때문일 것입니다.

 

그럼 아두이노는 어떤 장점이 있는지 요약하여 봅니다.

 

1) 소프트웨어 개발을 위한 통합 환경(IDE)이 간소화 되었다는 것입니다.

가장 큰 장점으로 기존의 AVR 프로그래밍은 WinAVR로 컴파일하여 별도의 ISP 장치를 통해 업로드 해야하는 번거로운 과정을 거쳐야 하는데, 아두이노는 컴파일된 펌웨어를 보드 내 USB 포트에서 PC의 USB 포트로 케이블을 연결하는 것만으로 쉽게 업로드 할 수 있다는 것입니다.

 

2) Windows를 비롯한 Mac OS X 및 Linux와 같은 다양한 OS 환경을 지원합니다.

 

3) 다양한 소프트웨어와 연동이 가능하다는 것입니다.

사용자들이 기존에 즐겨 사용하여 익숙했었던 Flash나 Processing, Max/MSP, Android, Object C, Labview, Pure Data 등과 같은 소프트웨어를 연동할 수 있다는 것입니다.

 

4) 가격이 저렴합니다.

사실 마이크로컨트롤러를 배우고 싶어서 강좌를 듣거나 데모보드를 구입하려면 최소한 수 십만원 정도 이상을 호가하는데, 이에 비해 아두이노 보드는 상대적으로 매우 저렴하다는 것입니다.

 

5) 아두이노는 오프 소스입니다.

아두이노는 보드의 회로도가 공개되어 있으며 개발환경 조차도 오픈 소스이고 이로 인해 각종 회로도나 펌웨어 소스가 웹상에서 다량 공유되어 있다는 것입니다. 뿐만 아니라 여러 개발자들이 만들어 놓은 라이브러리 조차도 공유되어 개발 시간을 단축시키고 있다는 것입니다. 

 

다음은 아두이노 포럼입니다.

 

http://forum.arduino.cc/

 

 

현재 가장 많이 사용되는 아두이노는 보드는 기본형 우노(Arduino UNO)로써 손바닥만한 크기를 가지면서 ATmega328을 탑재하고 있는데 6개의 아날로그 입력단자와 14개의 디지털 입출력단자를 지원합니다. 이러한 입출력 단자들은 우노 보드에 위로 쌓아(Stack-up) 연결된 확장보드(Shield 보드, Shield-up 보드)에 서로 연결되고, 사용자는 1개 이상의 이들 확장보드에 주변회로를 직접 꾸며주게 됩니다.

 

 

 

Posted by Nature & Life