가속도계(Accelerometer)는 움직임이 있을 때마다 값이 튈 수 밖에 없는데 이는 움직임에 따른 가속도와 중력가속도가 합해져 마치 중력가속도 방향이 변한 것처럼 보이기 때문입니다. 이러한 고주파 잡음을 제거하기 위해서는 저역 통과필터(Low pass filter; LPF)를 사용해야 합니다. 반면에 자이로(Gyroscope)는 잡음이 긴 시간에 대해서 누적(적분)되어 드리프트(혹은 바이어스)되므로 짧은 시간인 고역 통과필터(High pass filter; HPF)를 사용해야 합니다. 이러한 아이디어를 구체화한 것이 아래의 블록선도와 같으며 이를 IMU(Inertia Measurement Unit) 데이터를 융합하는데 가장 간단한 방법인 보상필터(Complementary filter) 혹은 상보필러라 부릅니다.




여기서 과 는 각각 1차 저역 통과필터, 1차 고역 통과필터로 그 합은 안정성의 문제로 '1'이 성립되어야만 합니다. 2차 필터도 구현할 수 있지만 편의상 1차 필터로만 제한합니다. 위 그림으로부터 수식을 정리하면 다음과 같습니다.



여기서 는 차단주파수(cut off frequency)를 결정합니다. 위 식을 정리하면 다음과 같습니다.



위 수식으로 블록선도를 다시 그리면 다음과 같습니다.



위 수식을 MCU로 처리하기 위해서는 연속시간에 대한 이산화가 필요하고 하드웨어 상에 아날로그 혹은 디지털 필터(예를 들어 IIR, FIR 등)를 사용하지 않는 이상 코드로 구현해야 합니다. MCU 성능 개선으로 외장 디지털 필터나 디지털 필터 알고리즘을 사용하지 않고 수식을 이산화하여 구현하였습니다.


동일한 연속 시간 전달 함수(continous time transfer function) G(s)를 이산화하는 방법에는 여러가지가 있으며 안정도와 고주파 잡음 등과 같은 성능이 동일하지는 않습니다. 전형적으로 연속 시간 전달 함수(continous time transfer function) G(s)를 이산(불연속 시간 전달 함수(discrete time transfer function) H(z)로 변환하는 방법은 전형적으로 다음과 같은 방법이 있습니다.


1) 후방 차분법(backward difference) : 

2) Bilinear transformation, expansion of ln(z) : 

3) Impulse invariance transformation : 


가장 기본적인 후방 차분법(backward difference)을 적용하면 이므로 이를 대입하여 다시 정리하면 추정 각도 는 다음과 같이 나타낼 수 있습니다.



여기서 편의상 가속계인 accelerometer의 첫글자 , 자이로 측정치로부터의 각속도(rotation rate)라 놓았습니다.


위 식에 z 변환인 은 이산 시스템에서 이므로 위 식을 이산 신호 시스템으로 변경하면 다음과 같습니다. 다른 말로 는 단위 시간 지연(unit time delay)과도 같기 때문입니다.



위 식에서 이면 다음과 같습니다.



정성적으로 위 수식에서 만일 가속도계에 측정치가 튄다면 즉, 고주파 잡음이 들어갔다면, 0.01이 곱하여져 새로운 각도가 계산됩니다. 그러나 0.01이 곱하여지므로 기여도는 작아 각도는 프로그램 루프(loop)가 상당히 반복되어도 매우 천천히 증가하게 됩니다. 이는 가속도계 입력이 추정 각도 계산에 실시간으로 반영되기 어렵고 이는 출력이 반응하지 않는다는 의미로 고주파 잡음은 제거되고 서서히 증감되는 저주파 측정치만 반영되게 된다는 의미입니다.


는 weight factor라 부르며 통상 0.95~0.98 범위의 값을 사용합니다.



Appendix A.


Reference:

http://d1.amobbs.com/bbs_upload782111/files_44/ourdev_665531S2JZG6.pdf

http://www.olliw.eu/2013/imu-data-fusing/#chapter21

http://www.dummies.com/education/science/signals-and-systems-working-with-transform-theorems-and-pairs/(z-transform)




Posted by Nature & Life


MPU6050 센서는 가속도계(Accelerometer)와 자이로(Gyroscope)가 1개의 칩에 모두 포함하고 있는 6DOF(Degrees of Freedom) MEMS(Micro Electro Mechanical Systems) 센서로, I2C(Inter Integrated Circuit) 통신 프로토콜을 통해서 데이터를 가져올 수 있습니다. 다음은 MPU6050의 메뉴얼입니다.


http://www.invensense.com/wp-content/uploads/2015/02/MPU-6000-Datasheet1.pdf



MPU6050의 특징입니다.

      • 3-axis Accel + 3-axis Gyroscope DMP(Digital Motion Processor)

      • ±1% Temperature Sensor( Digital output )

      • 7개의 16bit ADC를 내장하여 16bit 정교한 기울기 출력

      • ±250,±500,±1000,±2000(˚/sec) dps 자이로, ±2,±4,±8,±16g 가속도 (User programable)

      • 1024byte fifo buffer

      • I2C 400KHz

      • Programable Interrupts

      • High-G Interrupts

      • VDD: 2.375V ~ 3.46V

      • Gyroscope Operating current 3.6mA( Standby 5uA )

      • Accelerometer Operating current 500uA( Low Power mode 10uA~ )

      • Programable Low-Pass Filter

      • -40℃ ~ +85℃ (TA 25℃ )

      • StartUp time 30msec

      • Self Test

      • I2C Address : 0x68 ( except R/W 0x1 )

      • I2C Master or Slave

      • Auxiliary I2C bus for communicating to an off-chip 3-Axis digital output magnetometer(지자계 센서) or other sensors.


MPU6050은 24pin QFN 패키지로 내부 timing generator를 사용하지 않는 경우 외장 32.768kHz 혹은 19.2MHz 클럭이 필요합니다. 따라서 사용이 용이하도록 주변 소자를 내장한 MPU6050의 Breakout 보드가 있으며 GY-521의 그 중의 하나입니다.


GY-521의 회로도


GY-521 모듈

(가속도계와 자이로의 방향은 MPU6050 칩의 1번 핀을 기준으로 3차원 축이 결정되며 MPU6050과 동일함을 알 수 있습니다)


MPU6050(GY-521)은 가속도계를 포함하므로 가속도를 측정하는 센서는 아닙니다. 단지 가속도를 이용하여 3차원 공간상 X, Y 그리고 Z 축을 중심으로 기울어진 각도(기울기)를 얻는 센서입니다. 가속도는 중력 방향과의 반대 방향일 때 양(+)이고 아래에서 각 축에 곡선 화살표는 자이로의 회전방향을 나타냅니다. 가속도계와 자이로 외에도 온도도 측정할 수 있는데 이는 이와같은 센서가 온도에 따라 약간 변화하기 때문에 이를 보정하는 목적으로 제공합니다.


만일 MPU6050을 비행기에 탑재하고 진행방향이 Y축 방향과 같다면 가속도계 출력 AccX는 롤(Roll), AccY는 피치(Pitch)그리고 AccZ는 요(Yaw)가 됩니다. 즉 AccX는 X축을 기준으로 기울어진 각도를 의미합니다. 가속도계는 X, Y축에 대해서 기울어진 정도를 중력가속도[g]의 단위로 출력합니다. 이때 기준 방향은 중력방향입니다. 그러나 Z축이 중력방향이 일치하는 경우 요를 구할 수 없다는 것입니다.


만일 움직이지 않고 이동하는 경우 진행 방향의 가속도의 영향으로 중력 방향이 변하게 되어 부정확하게 된다는 것입니다. 이러한 이유로 자이로의 측정 결과를 참조하게 되는데, 자이로는 짧은 시간은 정확하기 때문입니다. 하지만 긴 시간에 대해서는 자이로 센서가 측정시 함유하는 잡음 등을 각속도를 적분하여 기울기를 얻기 때문에 적분하는데, 이 과정에서 오차(적분상수)는 누적되고 시간에 따라 자이로 측정값은 드리프트하게 됩니다. 이때 변화분을 bias라고도 부릅니다.



위 그림에서 X축을 중심으로 회전한 각도 φ와 Y축을 중심으로 회전한 각도 ρ의 계산식입니다. 만일 X축 자체가 기울어지지 않았다면, 중력이 X축 상에 기여도는 없어 φ는 arctan(Ay/Az)으로 간략하게 됩니다. 여기서 Ax, Ay, Az는 AccX, AccY, AccZ입니다. ρ에서 음의 부호는 X축 중심으로 회전각도는 Y축이 위쪽으로 기울어져야 양이지만, Y축 중심으로 회전각도는 X축이 아래로 기울어져야 양이기 때문입니다.


MPU6050을 사용해 실시간으로 기울기를 요구하는 시스템은 가속도계의 측정값과 자이로의 측정값을 적절히 잡음을 고려하여 융합하고 최적의 가장 정확한 기울기를 얻어냅니다. 이때 사용하는 필터는 보상필터(Complementary filter; 혹은 상보필터)와 칼만필터(Kalman filter)로 알려집니다.


MPU6050은 7개의 채널에 대해서 16bit 크기의 값을 출력해주는 고성능 ADC를 내장하므로 각 축의 센서 출력값에 대해서 int16_t(-32768~32767)의 자료형으로 접근해야 합니다. 또한 MPU6050은 update rate(sampling time)이 가속도, 자이로에 대해서 각각 4~1000Hz, 4~8000Hz으로 출력값을 제공합니다.


MPU6050은 내부 레지스터를 이용해서 출력 값의 범위를 조정할 수 있습니다. 예를 들어 가속도계에서 AFS_SEL=0으로 설정함으로써 출력은 ±2[g]까지 나타낼 수 있으며 이를 2byte 크기로 나타내게 됩니다. 만일 AFS_SEL=0과 FS_SEL=0을 설정하였다면 다음과 같습니다.



가속도계에서는 최대 ±2[g]이고(-2g에서 +2g까지 측정하여 -32768에서 +32767까지 매핑Scale Factor가 1g당 16,384로 출력에 이를 나누어주면 실제 [g] 단위를 얻을 수 있습니다. 그러나 우리가 원하는 것은 기울어지 각도이므로 arctan에서는 비율(ratio)만을 사용하므로 단위는 의미가 없게 됩니다. 자이로에서는 최대 ±250[deg/s]이고(-250에서 +250까지 측정하여 -32768에서 32767까지 매핑Scale Factor가 131(32767/250)로 출력에 이를 나누어주면 실제 [deg/s] 단위의 각가속도를 얻을 수 있습니다. 각 센서는 감도(Sensitivity)를 증가시킬수록 미세하게 측정 가능하지만 정확도는 떨어집니다.


다음은 아두이노(Arduino) 보드와 GY-521(MPU6050) 모듈과의 연결 방법과 Wire 라이브러리를 이용하여 실행한 MPU6050의 데이터 출력의 예제입니다.


아두이노 보드와 연결 방법



// MPU-6050 Short Example Sketch
// By Arduino User JohnChi
// August 17, 2014
// Public Domain

#include<Wire.h>
const int MPU_addr=0x68;  // I2C address of the MPU-6050
int16_t AcX,AcY,AcZ,Tmp,GyX,GyY,GyZ;
void setup(){
  Wire.begin(); // Wire 라이브러리 초기화
  Wire.beginTransmission(MPU_addr);
  Wire.write(0x6B);  // PWR_MGMT_1 register
  Wire.write(0);      // set to zero (wakes up the MPU-6050)
  Wire.endTransmission(true);
  Serial.begin(9600);
}
void loop(){
  Wire.beginTransmission(MPU_addr);
  Wire.write(0x3B);  // starting with register 0x3B (ACCEL_XOUT_H)
  Wire.endTransmission(false);
  Wire.requestFrom(MPU_addr,14,true);  // request a total of 14 registers
  AcX=Wire.read()<<8|Wire.read();  // 0x3B (ACCEL_XOUT_H) & 0x3C (ACCEL_XOUT_L)     
  AcY=Wire.read()<<8|Wire.read();  // 0x3D (ACCEL_YOUT_H) & 0x3E (ACCEL_YOUT_L)
  AcZ=Wire.read()<<8|Wire.read();  // 0x3F (ACCEL_ZOUT_H) & 0x40 (ACCEL_ZOUT_L)
  Tmp=Wire.read()<<8|Wire.read();  // 0x41 (TEMP_OUT_H) & 0x42 (TEMP_OUT_L)
  GyX=Wire.read()<<8|Wire.read();  // 0x43 (GYRO_XOUT_H) & 0x44 (GYRO_XOUT_L)
  GyY=Wire.read()<<8|Wire.read();  // 0x45 (GYRO_YOUT_H) & 0x46 (GYRO_YOUT_L)
  GyZ=Wire.read()<<8|Wire.read();  // 0x47 (GYRO_ZOUT_H) & 0x48 (GYRO_ZOUT_L)
  Serial.print("AcX = "); Serial.print(AcX);
  Serial.print(" | AcY = "); Serial.print(AcY);
  Serial.print(" | AcZ = "); Serial.print(AcZ);
  Serial.print(" | Tmp = "); Serial.print(Tmp/340.00+36.53);  //equation for temperature in degrees C from datasheet
  Serial.print(" | GyX = "); Serial.print(GyX);
  Serial.print(" | GyY = "); Serial.print(GyY);
  Serial.print(" | GyZ = "); Serial.println(GyZ);
  delay(333); 
}




'Flight Controller 이해 > 센서' 카테고리의 다른 글

관성측정장치(IMU)의 원리  (0) 2017.03.14
드론에 요구되는 각종 센서들  (0) 2017.02.26
Posted by Nature & Life
Embedded Lecture/Arduino2017. 11. 30. 18:04


아두이노에서 기본적으로 제공하는 Wire 라이브러리를 이용해도 되지만 I2C 라이브러리를 이용하여 MPU6050의 X축, Y축 그리고 Z축의 기울기를 구하였습니다.


i2c.ino

const uint8_t IMUAddress = 0x68; // AD0 is logic low on the PCB

const uint16_t I2C_TIMEOUT = 1000; // Used to check for errors in I2C communication


uint8_t i2cWrite(uint8_t registerAddress, uint8_t data, bool sendStop) {

  return i2cWrite(registerAddress,&data,1,sendStop); // Returns 0 on success

}


uint8_t i2cWrite(uint8_t registerAddress, uint8_t* data, uint8_t length, bool sendStop) {

  Wire.beginTransmission(IMUAddress);

  Wire.write(registerAddress);

  Wire.write(data, length);

  return Wire.endTransmission(sendStop); // Returns 0 on success

}


uint8_t i2cRead(uint8_t registerAddress, uint8_t* data, uint8_t nbytes) {

  uint32_t timeOutTimer;

  Wire.beginTransmission(IMUAddress);

  Wire.write(registerAddress);

  if(Wire.endTransmission(false)) // Don't release the bus

    return 1; // Error in communication

  Wire.requestFrom(IMUAddress, nbytes,(uint8_t)true); // Send a repeated start and then release the bus after reading

  for(uint8_t i = 0; i < nbytes; i++) {

    if(Wire.available())

      data[i] = Wire.read();

    else {

      timeOutTimer = micros();

      while(((micros() - timeOutTimer) < I2C_TIMEOUT) && !Wire.available());

      if(Wire.available())

        data[i] = Wire.read();

      else

        return 2; // Error in communication

    }

  }

  return 0; // Success

}


Kalman.h

/* Copyright (C) 2012 Kristian Lauszus, TKJ Electronics-> All rights reserved->

 This software may be distributed and modified under the terms of the GNU

 General Public License version 2 (GPL2) as published by the Free Software

 Foundation and appearing in the file GPL2->TXT included in the packaging of

 this file-> Please note that GPL2 Section 2[b] requires that all works based

 on this software must also be made publicly available under the terms of

 the GPL2 ("Copyleft")->


 Contact information

 -------------------

 Kristian Lauszus, TKJ Electronics

 Web      :  http://www->tkjelectronics->com

 e-mail   :  kristianl@tkjelectronics->com

 */


#ifndef _Kalman_h

#define _Kalman_h


struct Kalman {

    /* Kalman filter variables */

    double Q_angle; // Process noise variance for the accelerometer

    double Q_bias; // Process noise variance for the gyro bias

    double R_measure; // Measurement noise variance - this is actually the variance of the measurement noise


    double angle; // The angle calculated by the Kalman filter - part of the 2x1 state vector

    double bias; // The gyro bias calculated by the Kalman filter - part of the 2x1 state vector

    double rate; // Unbiased rate calculated from the rate and the calculated bias - you have to call getAngle to update the rate


    double P[2][2]; // Error covariance matrix - This is a 2x2 matrix

    double K[2]; // Kalman gain - This is a 2x1 vector

    double y; // Angle difference

    double S; // Estimate error

};


void Init(struct Kalman* klm){

    /* We will set the variables like so, these can also be tuned by the user */

    klm->Q_angle = 0.001;

    klm->Q_bias = 0.003;

    klm->R_measure = 0.03;


    klm->angle = 0; // Reset the angle

    klm->bias = 0; // Reset bias

   klm->P[0][0] = 0; // Since we assume that the bias is 0 and we know the starting angle (use setAngle), the error covariance matrix is set like so - see: http://en->wikipedia->org/wiki/Kalman_filter#Example_application->2C_technical

    klm->P[0][1] = 0;

    klm->P[1][0] = 0;

    klm->P[1][1] = 0;

}


// The angle should be in degrees and the rate should be in degrees per second and the delta time in seconds

double getAngle(struct Kalman * klm, double newAngle, double newRate, double dt) {

    // KasBot V2  -  Kalman filter module - http://www->x-firm->com/?page_id=145

    // Modified by Kristian Lauszus

   // See my blog post for more information: http://blog->tkjelectronics->dk/2012/09/a-practical-approach-to-kalman-filter-and-how-to-implement-it


    float P00_temp;

    float P01_temp;


    // Discrete Kalman filter time update equations - Time Update ("Predict")

    // Update xhat - Project the state ahead


   /* Step 1 */

    klm->rate = newRate - klm->bias;

    klm->angle += dt * klm->rate;


    // Update estimation error covariance - Project the error covariance ahead


    /* Step 2 */

    klm->P[0][0] += dt * (dt*klm->P[1][1] - klm->P[0][1] - klm->P[1][0] + klm->Q_angle);

    klm->P[0][1] -= dt * klm->P[1][1];

    klm->P[1][0] -= dt * klm->P[1][1];

    klm->P[1][1] += klm->Q_bias * dt;


    // Discrete Kalman filter measurement update equations - Measurement Update ("Correct")

    // Calculate Kalman gain - Compute the Kalman gain


    /* Step 4 */

    klm->S = klm->P[0][0] + klm->R_measure;


    /* Step 5 */

    klm->K[0] = klm->P[0][0] / klm->S;

    klm->K[1] = klm->P[1][0] / klm->S;


    // Calculate angle and bias - Update estimate with measurement zk (newAngle)


    /* Step 3 */

    klm->y = newAngle - klm->angle;

 

   /* Step 6 */

    klm->angle += klm->K[0] * klm->y;

    klm->bias += klm->K[1] * klm->y;


    // Calculate estimation error covariance - Update the error covariance


    /* Step 7 */

    P00_temp = klm->P[0][0];

    P01_temp = klm->P[0][1];


    klm->P[0][0] -= klm->K[0] * P00_temp;

    klm->P[0][1] -= klm->K[0] * P01_temp;

    klm->P[1][0] -= klm->K[1] * P00_temp;

    klm->P[1][1] -= klm->K[1] * P01_temp;

 

   return klm->angle;

}

// Used to set angle, this should be set as the starting angle

void setAngle(struct Kalman* klm, double newAngle) { klm->angle = newAngle; }


// Return the unbiased rate

double getRate(struct Kalman* klm) { return klm->rate; }

 

/* These are used to tune the Kalman filter */

void setQangle(struct Kalman* klm, double newQ_angle) { klm->Q_angle = newQ_angle; }


/* Default value is (0.003f), raise this to follow input more closely, lower this to smooth result of kalman filter */

void setQbias(struct Kalman* klm, double newQ_bias) { klm->Q_bias = newQ_bias; }

void setRmeasure(struct Kalman* klm, double newR_measure) { klm->R_measure = newR_measure; }

double getQangle(struct Kalman* klm) { return klm->Q_angle; }

double getQbias(struct Kalman* klm) { return klm->Q_bias; }

double getRmeasure(struct Kalman* klm) { return klm->R_measure; }

#endif


mpu6050.ino

/* Copyright (C) 2012 Kristian Lauszus, TKJ Electronics. All rights reserved.

This software may be distributed and modified under the terms of the GNU

General Public License version 2 (GPL2) as published by the Free Software

Foundation and appearing in the file GPL2.TXT included in the packaging of

this file. Please note that GPL2 Section 2[b] requires that all works based

on this software must also be made publicly available under the terms of

the GPL2 ("Copyleft").

Contact information

-------------------

Kristian Lauszus, TKJ Electronics

Web : http://www.tkjelectronics.com

e-mail : kristianl@tkjelectronics.com

Updated by Joe YOON in 2017.12.02

*/


#include <Wire.h>

#include "Kalman.h"


struct kalman Kal_struct_X, Kal_struct_Y; // Create the Kalman instances


/* IMU Data */

int16_t accX, accY, accZ; // 3-axis accelerometer

int16_t tempRaw;

int16_t gyroX, gyroY, gyroZ; // 3-axis gyroscope


double accXangle, accYangle; // Angle calculate using the accelerometer

double temp; // Temperature

double gyroXangle, gyroYangle; // Rate calculate using the gyro

double compAngleX, compAngleY; // Calculate the angle using a complementary filter

double kalAngleX, kalAngleY; // Calculate the angle using a Kalman filter


uint32_t timer;

uint8_t i2cData[14]; // Buffer for I2C data


void setup() {

  Init(&Kal_struct_X); // Initialize Kalman filter for X-axis

  Init(&Kal_struct_Y); // Initialize Kalman filter for Y-axis

  Serial.begin(9600);

  Wire.begin();

  i2cData[0] = 7; // Set the sample rate to 1000Hz - 8kHz/(7+1) = 1000Hz

  i2cData[1] = 0x00; // Disable FSYNC and set 260 Hz Acc filtering, 256 Hz Gyro filtering, 8 KHz sampling

  i2cData[2] = 0x00; // Set Gyro Full Scale Range to +/-250[deg/s]

  i2cData[3] = 0x00; // Set Accelerometer Full Scale Range to +/-2[g]

  while(i2cWrite(0x19,i2cData,4,false)); // Write to all four registers at once

  while(i2cWrite(0x6B,0x01,true)); // PLL with X axis gyroscope reference and disable sleep mode

  while(i2cRead(0x75,i2cData,1));

  if(i2cData[0] != 0x68) { // Read "WHO_AM_I" register

    Serial.print(F("Error reading sensor"));

    while(1);

  }

  

  delay(100); // Wait for sensor to stabilize

  

  /* Set kalman and gyro starting angle */

  while(i2cRead(0x3B,i2cData,6));

  accX = ((i2cData[0] << 8) | i2cData[1]);

  accY = ((i2cData[2] << 8) | i2cData[3]);

  accZ = ((i2cData[4] << 8) | i2cData[5]);


  // atan2 outputs the value of -? to ? (radians) - see http://en.wikipedia.org/wiki/Atan2

  // We then convert it to 0 to 2? and then from radians to degrees

  accYangle = atan2(-1*accX/sqrt(pow(accY,2) + pow(accZ,2)))*RAD_TO_DEG;

  accXangle = atan2(accY/sqrt(pow(accX,2) + pow(accZ,2)))*RAD_TO_DEG;

   

  setAngle(&Kal_struct_X, accXangle); // Set starting angle

  setAngle(&Kal_struct_Y, accYangle);


  gyroXangle = accXangle;

  gyroYangle = accYangle;

  compAngleX = accXangle;

  compAngleY = accYangle;

  

  timer = micros();

}


void loop() {

  /* Update all the values */

  while(i2cRead(0x3B,i2cData,14));

  accX = ((i2cData[0] << 8) | i2cData[1]);

  accY = ((i2cData[2] << 8) | i2cData[3]);

  accZ = ((i2cData[4] << 8) | i2cData[5]);

  tempRaw = ((i2cData[6] << 8) | i2cData[7]);

  gyroX = ((i2cData[8] << 8) | i2cData[9]);

  gyroY = ((i2cData[10] << 8) | i2cData[11]);

  gyroZ = ((i2cData[12] << 8) | i2cData[13]);

  

  // atan2 outputs the value of -? to ? (radians) - see http://en.wikipedia.org/wiki/Atan2

  // We then convert it to 0 to 2? and then from radians to degrees

  accYangle = atan2(-1*accX/sqrt(pow(accY,2) + pow(accZ,2)))*RAD_TO_DEG;

  accXangle = atan2(accY/sqrt(pow(accX,2) + pow(accZ,2)))*RAD_TO_DEG;

   

  double gyroXrate = (double)gyroX/131.0;

  double gyroYrate = -((double)gyroY/131.0);

  gyroXangle += gyroXrate*((double)(micros()-timer)/1000000); // Calculate gyro angle without any filter

  gyroYangle += gyroYrate*((double)(micros()-timer)/1000000);

  //gyroXangle += kalmanX.getRate()*((double)(micros()-timer)/1000000); // Calculate gyro angle using the unbiased rate

  //gyroYangle += kalmanY.getRate()*((double)(micros()-timer)/1000000);

  

  compAngleX = (0.93*(compAngleX+(gyroXrate*(double)(micros()-timer)/1000000)))+(0.07*accXangle); // Calculate the angle using a Complimentary filter

  compAngleY = (0.93*(compAngleY+(gyroYrate*(double)(micros()-timer)/1000000)))+(0.07*accYangle);

  

  kalAngleX = getAngle(&Kal_struct_X, accXanglegyroXrate(double)(micros()-timer)/1000000); // Calculate the angle using a Kalman filter

  kalAngleY = getAngle(&Kal_struct_Y, accYanglegyroYrate(double)(micros()-timer)/1000000);

  timer = micros();

  

  temp = ((double)tempRaw + 12412.0) / 340.0;

  

  /* Print Data */

  display_formatted_float(accX, 5, 0, 3, false);

  display_formatted_float(accY, 5, 0, 3, false);

  display_formatted_float(accZ, 5, 0, 3, false);

  display_formatted_float(gyroX, 5, 0, 3, false);

  display_formatted_float(gyroY, 5, 0, 3, false);

  display_formatted_float(gyroZ, 5, 0, 3, false);


  Serial.print("\t");


  display_formatted_float(accXangle, 5, 2, 3, false);

  display_formatted_float(gyroXangle, 5, 2, 3, false);

  display_formatted_float(compAngleX, 5, 2, 3, false);

  display_formatted_float(kalAngleX, 5, 2, 3, false);


  Serial.print("\t");


  display_formatted_float(accYangle, 5, 2, 3, false);

  display_formatted_float(gyroYangle, 5, 2, 3, false);

  display_formatted_float(compAngleY, 5, 2, 3, false);

  display_formatted_float(kalAngleY, 5, 2, 3, false);


  //Serial.print(temp);Serial.print("\t");


  Serial.print("\r\n");

  delay(1);

}


void display_formatted_float(double val, int characteristic, int mantissa, int blank, boolean linefeed) {

  char outString[16];

  int len;


  dtostrf(val, characteristic, mantissa, outString);

  len = strlen(outString);

  for(int i = 0; i < ((characteristic+mantissa+blank)-len); i++) Serial.print(F(" "));

  Serial.print(outString);

  if(linefeed)

    Serial.print(F("\n"));

}


Posted by Nature & Life


아두이노(Arduino) 환경에서 전형적인 MPU6050 센서 입력에 사용되는 칼만 필터(Kalman filter)의 예제입니다.

http://blog.tkjelectronics.dk/2012/09/a-practical-approach-to-kalman-filter-and-how-to-implement-it/#comment-57783


또한 이 칼만 필터는 가속도계(accelerometer) 혹은 지자계(magnetometer)와 그리고 자이로(gyroscope)로부터 각도(angle), 각속도(rate) 그리고 bias를 계산하는데 사용될 수 있습니다(C++ version).

https://github.com/TKJElectronics/KalmanFilter


다음은 C version입니다.

http://www.cnblogs.com/zjutlitao/p/3915786.html



Kalman.h

/* Copyright (C) 2012 Kristian Lauszus, TKJ Electronics-> All rights reserved->


 This software may be distributed and modified under the terms of the GNU

 General Public License version 2 (GPL2) as published by the Free Software

 Foundation and appearing in the file GPL2->TXT included in the packaging of

 this file-> Please note that GPL2 Section 2[b] requires that all works based

 on this software must also be made publicly available under the terms of

 the GPL2 ("Copyleft")->


 Contact information

 -------------------


 Kristian Lauszus, TKJ Electronics

 Web      :  http://www->tkjelectronics->com

 e-mail   :  kristianl@tkjelectronics->com

 */


#ifndef _Kalman_h

#define _Kalman_h

struct Kalman {

    /* Kalman filter variables */

    double Q_angle; // Process noise variance for the accelerometer

    double Q_bias; // Process noise variance for the gyro bias

    double R_measure; // Measurement noise variance - this is actually the variance of the measurement noise


    double angle; // The angle calculated by the Kalman filter - part of the 2x1 state vector

    double bias; // The gyro bias calculated by the Kalman filter - part of the 2x1 state vector

    double rate; // Unbiased rate calculated from the rate and the calculated bias - you have to call getAngle to update the rate


    double P[2][2]; // Error covariance matrix - This is a 2x2 matrix

    double K[2]; // Kalman gain - This is a 2x1 vector

    double y; // Angle difference

    double S; // Estimate error

};


void Init(struct Kalman* klm){

    /* We will set the variables like so, these can also be tuned by the user */

    klm->Q_angle = 0.001;

    klm->Q_bias = 0.003;

    klm->R_measure = 0.03;


    klm->angle = 0; // Reset the angle

    klm->bias = 0; // Reset bias

   klm->P[0][0] = 0; // Since we assume that the bias is 0 and we know the starting angle (use setAngle), the error covariance matrix is set like so - see: http://en->wikipedia->org/wiki/Kalman_filter#Example_application->2C_technical

    klm->P[0][1] = 0;

    klm->P[1][0] = 0;

    klm->P[1][1] = 0;

}


// The angle should be in degrees and the rate should be in degrees per second and the delta time in seconds

double getAngle(struct Kalman * klm, double newAngle, double newRate, double dt) {

    // KasBot V2  -  Kalman filter module - http://www->x-firm->com/?page_id=145

    // Modified by Kristian Lauszus

   // See my blog post for more information: http://blog->tkjelectronics->dk/2012/09/a-practical-approach-to-kalman-filter-and-how-to-implement-it


    float P00_temp;

    float P01_temp;


    // Discrete Kalman filter time update equations - Time Update ("Predict")

    // Update xhat - Project the state ahead

    /* Step 1 */

    klm->rate = newRate - klm->bias;

    klm->angle += dt * klm->rate;

    

    // Update estimation error covariance - Project the error covariance ahead

    /* Step 2 */

    klm->P[0][0] += dt * (dt*klm->P[1][1] - klm->P[0][1] - klm->P[1][0] + klm->Q_angle);

    klm->P[0][1] -= dt * klm->P[1][1];

    klm->P[1][0] -= dt * klm->P[1][1];

    klm->P[1][1] += klm->Q_bias * dt;

    

    // Discrete Kalman filter measurement update equations - Measurement Update ("Correct")

    // Calculate Kalman gain - Compute the Kalman gain

    /* Step 4 */

    klm->S = klm->P[0][0] + klm->R_measure;


    /* Step 5 */

    klm->K[0] = klm->P[0][0] / klm->S;

    klm->K[1] = klm->P[1][0] / klm->S;

    

    // Calculate angle and bias - Update estimate with measurement zk (newAngle)

    /* Step 3 */

    klm->y = newAngle - klm->angle;


    /* Step 6 */

    klm->angle += klm->K[0] * klm->y;

    klm->bias += klm->K[1] * klm->y;

    

    // Calculate estimation error covariance - Update the error covariance

    /* Step 7 */

   P00_temp = klm->P[0][0];

   P01_temp = klm->P[0][1];


    klm->P[0][0] -= klm->K[0] * P00_temp;

    klm->P[0][1] -= klm->K[0] * P01_temp;

    klm->P[1][0] -= klm->K[1] * P00_temp;

    klm->P[1][1] -= klm->K[1] * P01_temp;


    return klm->angle;

}


 // Used to set angle, this should be set as the starting angle

void setAngle(struct Kalman* klm, double newAngle) { klm->angle = newAngle; }

// Return the unbiased rate

double getRate(struct Kalman* klm) { return klm->rate; }
 

/* These are used to tune the Kalman filter */

void setQangle(struct Kalman* klm, double newQ_angle) { klm->Q_angle = newQ_angle; }


/* Default value is (0.003f), raise this to follow input more closely, lower this to smooth result of kalman filter */

void setQbias(struct Kalman* klm, double newQ_bias) { klm->Q_bias = newQ_bias; }


void setRmeasure(struct Kalman* klm, double newR_measure) { klm->R_measure = newR_measure; }

double getQangle(struct Kalman* klm) { return klm->Q_angle; }

double getQbias(struct Kalman* klm) { return klm->Q_bias; }

double getRmeasure(struct Kalman* klm) { return klm->R_measure; }


#endif


Kalman.h



Posted by Nature & Life


아두이노(Arduino) 환경에서 전형적인 MPU6050 센서 입력에 사용되는 칼만 필터(Kalman filter)의 예제입니다.

http://blog.tkjelectronics.dk/2012/09/a-practical-approach-to-kalman-filter-and-how-to-implement-it/#comment-57783


Step 1)



위 식에서 각도(angle)의 추정치 는 이전 상태의 추정치 에 bias 되지 않은 각속도(rate)에 곱하기 미소 시간 를 더한 것과 같습니다. bias 되지 않은 각속도(rate)에 곱하기 미소 시간 은 결국 드리프트 되지 않은 각도의 증분이 됩니다. 또한 좌측항은 아직 보정되지 않았음을 기억합니다.

게다가 우리는 bias를 직접 측정할 수 없기 때문에 bias의 추정치는 이전 것을 사용합니다.


이는 다음과 같이 C 언어로 쓸 수 있습니다.

rate = newRate - bias;

angle += dt * rate;


Step 2)



위 식은 다음과 같이 C 언어로 쓸 수 있습니다.

P[0][0] += dt * (dt*P[1][1] - P[0][1] - P[1][0] + Q_angle);

P[0][1] -= dt * P[1][1];

P[1][0] -= dt * P[1][1];

P[1][1] += Q_gyroBias * dt;


Step 3)



참고로 우측에 현재 상태변수는 보정되지 않았기 때문에 angle 변수를 그대로 사용합니다.

위 식은 다음과 같이 C 언어로 쓸 수 있습니다.


y = newAngle - angle;


Step 4)




위 식은 다음과 같이 C 언어로 쓸 수 있습니다.

S = P[0][0] + R_measure;


Step 5)



다른 경우에 S는 행렬이 될 수 있습니다. 그 경우에는 여러분은 간단히 S로 P를 나눌 수 없으며 역행렬을 구해서 곱해야 합니다.

위 식은 다음과 같이 C 언어로 쓸 수 있습니다.

K[0] = P[0][0] / S;

K[1] = P[1][0] / S;


Step 6)



위 식은 다음과 같이 C 언어로 쓸 수 있습니다.

angle += K[0] * y;

bias += K[1] * y;


Step 7)



상태 추정 오차가 감소되었기 때문에 오차 공분산 행렬을 다시 감소시킴을 기억하세요.

C 코드는 다음과 같습니다.

float P00_temp = P[0][0];

float P01_temp = P[0][1];


P[0][0] -= K[0] * P00_temp;

P[0][1] -= K[0] * P01_temp;

P[1][0] -= K[1] * P00_temp;

P[1][1] -= K[1] * P01_temp;


참고로 대부분의 IMU에 대해서 다음의 변수들이 완벽하게 동작합니다.

float Q_angle = 0.001;

float Q_gyroBias = 0.003;

float R_measure = 0.03;


초기치로서 각도를 설정하는 것을 기억하세요 왜냐하면 필터가 안정화되는데 시간이 걸리기 때문입니다. 반대로 칼만 필터가 안정화되기 전까지는 상태의 추정치를 믿을 수 없습니다.



Posted by Nature & Life


아두이노(Arduino) 환경에서 전형적인 MPU6050 센서 입력에 사용되는 칼만 필터(Kalman filter)의 예제입니다.

http://blog.tkjelectronics.dk/2012/09/a-practical-approach-to-kalman-filter-and-how-to-implement-it/#comment-57783


한편 의 관측 혹은 측정을 위한 식은 다음과 같이 주어집니다.



위 식에서와 같이 는 현재 상태 가  행렬과 곱하여지고 측정 잡음 와 합하여 집니다.


는 관측 모델로 불려지며 실제 상태 공간을 관측된 상태의 공간으로 매핑하기 위해서 사용되어집니다. 실제 상태는 관측될 수 없는데 이는 측정이 단지 가속도계로부터의 측정에 불과하기 때문입니다.


는 다음과 같습니다.



측정 잡음은 게다가 '0'의 평균과 다음과 같이 의 공분산을 가져야 합니다. 



그러나 은 행렬이 아니기 때문에 측정 잡음은 단지 측정값의 분산과 같습니다. 왜냐하면 같은 변수의 공분산은 분산과 같기 때문입니다. 그러므로 우리는 R을 다음과 같이 쓸 수 있습니다.



우리는 측정 잡음은 동일하고 시간 k에 의존하지 않는다고 가정합니다.



만일 여러분이 측정 잡음 분산 을 너무 높게 설정하면 필터는 너무 늦게 응답하는데 이는 새로운 측정값을 덜 믿기 때문이며, 반면에 너무 낮게 설정한다면 값은 오버슈트(overshoot)가 발생하고 잡음이 많은데 이는 우리가 가속도계 측정값을 너무 많이 믿기 때문임을 참고하세요.


그래서 여러분은 프로세스 잡음 분산 와  그리고 측정 잡음 의 측정 분산을 찾아야만 합니다.


Time Update("Predict")


처음 2개의 방정식에서 시간 k에서 우리는 현재 상태와 오차 공분산 행렬을 예측할 것입니다. 우선 필터는 모든 이전 상태들과 자이로 측정으로부터 근거 된 현재 상태를 추정할 것입니다.



위 식의 우측 두번째 항을 제어 입력이라고 부르는 이유는 우리가 현재 시간 k에서 상태를 추정하기 위해 이를 추가적인 입력으로 사용했기 때문입니다. 다음은 우리가 이전 오차 공부산 행렬 에 근거하여 다음에 정의된 것처럼 오차 공분산 행렬 을 추정할 것입니다.



이 행렬은 추정된 상태의 현재 값을 얼마나 많이 신뢰하는가를 추정하기 위해서 사용되어집니다. 작을수록 우리는 좀더 현재 추정된 상태를 신뢰하게 됩니다. 위 방정식의 원리는 실제로 이해하기에 매우 쉽습니다. 이는 우리가 상태의 추정을 마지막 갱신한 후에 오차 공분산은 증가하는 것이 매우 분명하기 때문입니다. 그러므로 우리는 오차 공분산 행렬을 상태 전이 모델 과 그 행렬의 전치행렬 을 곱하고 시간 k에서 현재 프로세스 잡음 를 더합니다.


오차 공분산 행렬 는 2x2 행렬입니다.



Measurement Update("Correct")


우리가 계산해야 할 첫번째 일은 측정치 와 보정되지 않은 이전 상태로부터 예측된 상태 변수 사이에 차를 계산하는 것입니다.



여기서 관측 모델 는 이전 상태 추정치를 관측된 공간과 매핑하게 위해서 사용되어집니다. 관측 공간이라 함은 가속도계로부터의 측정치로 그러므로 위 식은 행렬이 아닙니다.



다음에 할 것은 를 계산하는 것입니다.



이전 오차 공분산 행렬 와 측정 공분산 행렬 에 근거한 측정을 얼마나 믿을 수 있는지 예측하는 것입니다. 관측 모델 는 이전 오차 공분산 행렬 를 관측 공간으로 매핑하기 위해서 사용되어집니다.

큰 측정 잡음은 값을 크게 합니다. 이는 입력되는 측정값을 그렇게 많이 신뢰할 수 없음을 의미합니다. 이 경우 는 행렬이 아니고 다음과 같이 쓸 수 있습니다.



다음 단계는 칼만 이득(Kalman gain)을 계산하는 것입니다. 칼만 게인은 측정치 와 이전 상태 변수와의 차이를 얼마나 신뢰할 수 있는지를 나타내는데 사용되어집니다.



만일 우리가 그 차이를 도저히 신뢰하지 못한다면, 차이에 대한 공분산 는 높게 될 것입니다. 그리고 만일 우리가 추정된 상태를 신뢰한다면 오차 공분산 행렬 는 작게 될 것이고 칼만 이득도 작아질 것입니다. 반대로 차이를 신뢰하지만 현재 상태의 추정치를 믿지 못한다면 반대가 될 것입니다.

여기서 관측 모델 H의 전치행렬이 오차 공분산 행렬 P를 관측 공간으로 매핑하는데 사용되어짐을 알 수 있습니다. 그다음 우리는 공분산 S로 나누어 오차 공분산 행렬을 비교합니다.

이는 관측 모델 H를 상태 오차 공분산을 빼기 위해서 그리고 S의 현재 추정치와 비교하기 때문에 의미가 있다는 것입니다. 만일 여러분이 초기에 상태를 모른다면 오차 공분산 행렬을 다음과 같이 설정할 수 있다.



여기서 은 큰 숫자를 대표하며 초기에 상태가 알려진다면 오차 공분산 행렬을 다음과 같습니다.



칼만 이득은 2x1 행렬입니다.



우리는 추정된 현재 상태를 보상합니다.




이는 yk와 칼만 이득을 곱하여 보상되지 않은 현재 상태에 더하는 것입니다.


는 측정된 와 보상되지 않은 추정된 현재 상태의 차이로 양수나 음수가 될 수 있습니다.


가장 간단화된 방정식은 보상되지 않은 현재 추정 상태 를 가속도계 측정값으로 간단하게 바로잡는 것으로 이해할 수 있습니다.

여기서 는 이전 상태와 자이로 측정값으로부터 계산되어진 것입니다.


마지막으로 우리는 보상되지 않은 오차 공분산 행렬을 갱신하는 것입니다.



여기서 I는 항등행렬입니다.



필터가 하는 일은 기본적으로 얼마나 많이 우리가 추정치를 바로잡았는가에 근거하여 오차 공분산 행렬을 스스로 바로잡는 것입니다. 이것은 우리가 이전의 오차 공분산 과 공분산 에 근거된 상태를 바로잡았기 때문에 의미가 있다는 것입니다. 



Posted by Nature & Life


아두이노(Arduino) 환경에서 전형적인 MPU6050 센서 입력에 사용되는 칼만 필터(Kalman filter)의 예제입니다.

http://blog.tkjelectronics.dk/2012/09/a-practical-approach-to-kalman-filter-and-how-to-implement-it/#comment-57783


MPU6050은 가속도와 자이로센서가 1개의 센서에 모두 포함하고 있는 6DOF(Degrees of Freedom) 센서로, I2C(Inter Integrated Circuit) 통신 프로토콜을 통해서 데이터를 추출 할 수 있습니다. 위 모듈은 MPU6050을 포함하며 사용하기 쉽게 만든 모듈입니다. 


MPU6050의 간단한 스펙입니다.


가속도계(accelerometer)는 움직임이 있을때 일반적으로 많은 잡음(noise)을 포함합니다. 자이로(gyroscope)의 문제는 시간이 누적되면 DC 성분(혹은 이를 bias라 표현)이 누적된다는 것입니다. 결론적으로 자이로는 짧은 시간에 믿을 수 있지만, 반면 가속도계는 긴 시간에 더 신뢰성이 있다는 것입니다.



그렇기 때문에 상보 필터(complimentary filter, 혹은 보상 필터)의 적용이 쉽습니다. 기본적으로 가속도계에 대해서 디지털 low pass filter(LPF), 자이로에 대해서는 디지털 high pass filter(HPF)를 적용하는 것입니다. 그러나 칼만 필터(Kalman filter) 만큼 정확하지는 않다는 것입니다. 근래에 아두이노를 이용하여 처리가 가능하지만 칼만 필터는 아두이노가 주로 제공하는 MCU에서는 무겁다는 단점이 있습니다.


k 시간에 시스템의 상태는 다음과 같습니다.



여기서 는 상태 행렬로 다음과 같습니다.



는 각도 의 시간에 따라 누적된 양으로 bias라고 하며 자이로에서 측정된 값에서 이 bias를 빼는 것에 의하여 현재의 각도를 얻을 수 있습니다.


그러므로 이전 상태 로부터의 전이 행렬 는 다음과 같이 쓸 수 있습니다.



는 제어 입력으로 k 시점에서 자이로의 측정값으로 [˚/s]의 단위를 가지며 이 로 상태방정식을 다음과 같이 다시 쓸 수 있습니다.



여기서  제어 입력 행렬로 다음과 같이 나타낼 수 있습니다.



는 프로세스 잡음으로, 주어진 k 시간에서 '0'의 평균과 의 공분산(covariance)을 갖는 가우시안 분포(Gaussian distribution)(혹은 정규분포)를 갖습니다.



는 프로세스 잡음 공분산 행렬이고, 이 경우에 가속도계와 bias의 상태 추정치 공분산 행렬이 됩니다. 우리는 bias와 가속도계의 추정이 서로 독립적임을 가정합니다.



위 식에서 처럼  공분산 행렬은 현재 시간 k에 의존합니다. 따라서 가속도계 분산 와 bias의 분산 은 미소 시간 에 곱하여집니다.

프로세스 잡음은 시간이 길어질수록 커지게 됨을 의미합니다. 이는 상태의 마지막 업데이트이기 때문입니다. 예를 들어 자이로는 드리프트(drift) 할 수 있습니다. 우리는 칼만 필터의 동작을 위해서 이들 상수들을 알아야 합니다. 만일 여러분이 큰 값을 설정한다면 상태 추정에 잡음이 커진다는 것을 기억해야 합니다. 예를 들어, 추정 각도가 드리프트 하기 시작하면 여러분은 의 값을 증가시켜야 합니다. 반면에 추정이 여러분이 생각하는 것보다 너무 많이 느려진다면 반응이 빠르도록 의 값을 감소시켜 볼 수 있습니다.



Posted by Nature & Life


3축 가속도와 3축 자이로 센서를 조합한 후 각각의 센서 출력을 내보내는 장치를 관성측정장치(IMU; Inertial Measurement Unit)이라고 부릅니다. 스마트폰에도 탑재되어 있을 정도로 그 용도가 근래에 흔하며, 비행기의 항법 장치에 필수적인 요소입니다. 기체의 자세 제어에 요구되는 롤(Roll), 피치(Pitch), 요(Yaw)의 기울어진 각도를 알기 위함으로, 롤은 좌우로 기울어짐, 피치는 앞뒤로 기울어짐, 요는 z축 방향으로 기울어짐(회전각)을 의미합니다. 여기서 롤과 피치는 중력방향을 기준으로 얼마나 기울어져 있는지를 나타냅니다.



이처럼 롤과 피치 그리고 요와 같은 자세 측정을 위해서는 필요한 장치가 자이로와 가속도 센서입니다.


MEMS 기반의 3축 가속도 센서(Accelerometer)는 x축, y축, z축 방향의 가속도를 측정할 수 있으며 단위는 [g]입니다. 가속도 센서는 정지한 상태에서 중력 가속도를 감지하기 때문에 z축 방향으로 -g 만큼의 값을 출력합니다. 센서의 초기 출력은 모두 '0'이라고 가정하고 센서를 y축 기준으로 45도 기울여 보면, 기울어진 상태에서 z축 방향과 x축 방향으로 동일한 값의 가속도가 측정되며 중력방향으로 g가 측정되어야 하므로 0.707g 만큼 z축과 x축 방향으로 값이 출력됩니다. 결과적으로는 z축과 x축 값의 비율을 arctan으로 계산하여 기울어진 값을 구할 수 있습니다.



그러나 정지 상태가 아닌 움직이는 가속 상태의 경우, 또다른 힘의 영향으로 중력 방향이 변한 것처럼 올바른 값을 얻을 수가 없습니다. 즉, 정지하지 않은 움직임 상태에서는 가속도 센서만으로 기울기 값을 측정할 수는 없습니다. 뿐만 아니라 z축상에 회전각인 요는 중력 방향(중력가속도)이 전혀 변하지 않으므로 측정이 불가능합니다.


3축 자이로 센서(Gyroscope)는 가속도를 측정하는 가속도 센서와 달리 각속도를 측정하므로 단위는 [degree/sec]입니다. 자이로는 각속도를 재는 장치이기에 이를 이용해서 각도를 알려면 전체 시간에 대하여 적분을 하여 얻게 됩니다. 그러나 센서에서 측정되는 각속도는 노이즈나 어떠한 이유에 의해 측정값에 에러가 계속 생기는데, 이 오차가 적분시에는 누적이 되어서 최종 값이 드리프트 되는 현상이 발생합니다. 게다가 시간이 지날수록 이 오차는 커져 각도가 변하게 된다는 것입이다.


결과적으로 정지상태의 긴 시간의 관점에서 보면 가속도 센서에 의해 계산된 각도는 올바른 값을 보여주지만, 자이로 센서에서는 시간이 지날 수록 틀린 값을 내보내게 됩니다. 반대로 움직이는 짧은 시간의 관점에서 보면 자이로 센서는 올바른 값을 보여주지만 가속도 센서는 다른 값을 내보내게 됩니다.


그러므로 가속도 센서와 자이로 센서를 모두 사용해서 각각의 단점을 보상할 수 있는 알고리즘을 적용하여 롤 또는 피치 값을 계산하여야 한다는 것입니다. 많이 사용하는 보상 방법 및 필터링으로는 칼만 필터(Kalman filter)의 적용입니다.


요의 회전축은 z축방향, 즉 중력방향과 같으므로 가속도 센서가 아닌 자이로 센서의 z축 값을 측정해서 이 값을 이용해 요값을 계산하여야 하고 드리프트되는 오차를 보상하는 다른 센서를 추가적으로 사용하는데, 이것이 지자기 센서(magnetometer or compass)입니다. 자이로는 온도가 변하면 그 값이 같이 변하는 특성이 있어 정교한 측정을 위해서는 온도 센서도 함께 사용해서 오차를 보상하기도 합니다. 이를 모두 고려하면 3축 가속도 센서, 3축 자이로 센서, 3축 지자기 센서를 내장한 IMU 센서를 9축 센서라 부르는 이유에서 입니다.



위 그림의 칩은 Invensense사의 9DOF IMU인 MPU-9150입니다. 이는 3축 자이로 센서와 3축 가속도 센서인 MPU-6050과 3축 지자기 센서(digital compass)를 One Pakage(SiP)하였으며, I2C(TWI)를 지원합니다. 여기서 DOF는 'Degree Of Freedom'의 약자로 '축(Axis)'을 의미합니다.



'Flight Controller 이해 > 센서' 카테고리의 다른 글

MPU6050 센서  (1) 2017.12.01
드론에 요구되는 각종 센서들  (0) 2017.02.26
Posted by Nature & Life


과거 모형 헬기와 같은 전통적 RC는 메인 로터가 양력을 얻어 부양하고 메인 로터가 회전할 때 회전각에 따른 로터의 피치를 조절하여 헬기가 원하는 방향으로 나아가는데, 메인 로터로 인한 헬기 동체의 반동 토크를 상쇄시킬 목적으로 테일 로터도 함께 회전시키게 됩니다(안정성을 강조한 동축반전 헬기는 제외). 이때 헬기 동체가 정숙하게 방향성을 유지하고 호버링하거나 이동하기 위해서는 자이로(gyroscope) 센서의 도움을 받아 실시간 보상하였는데, 이것이 사실 비행 자동화의 전부였으며 나머지는 오직 조종자의 오랜 비행 경험을 토대로 한 자동 반사적인 키감에 의존하여 매우 역동적인 스포츠를 즐기게 되었습니다.


반면에 드론은 쿼드콥터를 예를 들어, 4개의 프로펠러로 양력을 얻고 원하는 방향으로 나아가기 위해서는 개별 로터의 회전속도를 정교히 제어해야 하는데 이는 컴퓨터의 도움없이는 거의 불가능하다는 것입니다. 이러한 이유로 드론의 비행제어기(FC; Flight Controller)는 사람의 심장과도 유사하여 수신모듈로 부터 수신된 명령 신호를 처리하여 각 암(ARM)의 모터를 제어하고, 게다가 가속도계/자이로 센서를 포함하는 관성측정장치(IMU), 바로미터, 컴파스/지자계 등의 센서 데이터를 기반으로 안정적인 비행이 가능하도록 한다는 것입니다.


최근에는 GPS 센서를 탑재하여 GPS 데이터에 기반하여 사전에 입력된 경유지(waypoint)를 순차적으로 운항하거나 RTL(Return to Launch)라는 자동 회귀 기능 등의 탑재로 조종자의 명령이나 각종 기체 이상 등을 감지하여 이륙 장소로 스스로 귀환시키거나, 영상 및 소리 센서들을 활용한 충돌회피 등등 다양한 기능들이 추가되면서 FC는 날로 매우 빠른 연산을 수행하는 MCU가 필요한 추세라는 것입니다.


이를 증명하듯 수 년전에는 오픈 소스에 기반한 APM(AutoPilot Mega) 보드나 multiwii 보드는 8bit 16MHz의 ATmega328이나 ATmega2560의 MCU가 사용되었는데, 그 후로 AruPilot의 PixHawk(3DR)은 훨씬 강력한 32bit 168MHz의 STMicro사의 ARM Cortex M4를 사용하게 되었습니다. 현재의 오픈 소스의 드론 플랫폼으로 가장 인기있는 PX4는 64bit quad-core 2.26GHz의 퀄컴사 SOC(System on Chip) 기반 스냅드래곤 SOC(System on Chip)을 채용하고 있는 실정입니다.



사실 드론이 안정적인 비행으로 대중화를 선언한 그 이면에는 고성능의 MCU 채용만큼이나 FC에서 중요한 것은 센서 기술의 진화에 있다고 해도 지나치지 않다라는 것입니다. 각종 센서들로부터 드론은 비행 속도/각도, 좌표, 위치 데이타 등을 실시간으로 MCU에 제공하여 상당히 안정적인 비행을 가능하게 하지만, 최근에는 저고도에서의 정확한 고도 유지와 포지션홀드 기능을 위해 초음파센서, 옵티컬플루우(Optical Flow) 센서 등이 사용되고 있으며, 또한 충돌회피를 위해 카메라 센서 기반한 SLAM(SImultaneous Localization and Mapping)등의 알고리즘들이 활발히 연구되고 있다는 것입니다.



Posted by Nature & Life
Drone News/News2015. 11. 26. 15:47


드론(Drone)의 쓰임새가 날로 다각화되고 있습니다. 최근에 국가 재난안전통신망에 '드론' 기지국을 도입한다는 것입니다. 이는 재난 상황 발생 시 부족한 통신 커버리지를 확보하기 위해서 임시로 중계기를 장착한 드론을 띄워 복구되기까지 사용하는 신개념 재난안전통신망 솔루션이라는 것입니다.


이외에도 KT는 평창 알펜시아 스키점프센터에서 재난안전통신망 시범사업 추진방향 발표와 함께 재난 상황에 대비한 '드론 LTE' 등 통신서비스를 선보였는데, 드론 LTE는 초경화된 기지국으로 15kg 무게 일반 기지국 통신장비를 800g까지 줄여 150m 상공에서 기지국 역할을 담당한다는 아이디어입니다. 


기존 기지국을 운영할 수 없거나 통신이 불가능한 지역에 사용되어 5대 드론을 편대로 운용하면 여의도 규모 지역 커버리지가 가능하다는 것인데, 이에 KT는 2018년까지 최장 비행시간 40분, 운영반경 20km, 탑재 중량 5kg 고성능 드론을 상용화할거라는 것입니다.





전 세계 드론 시장은 2020년에 20조원 규모로 성장할 것으로 예측되는데, 현재의 주요 관건은 비행거리와 체공시간이라는 것입니다. 밧데리 기술의 개발로 적은 무게의 밧데리가 순간적으로 많은 전류를 공급할 수 있어 엔진기에서 전동모터를 동력으로 하는 드론의 출현은 엄청난 변화였지만, 짧은 비행거리와 20여분 밖에 되지 않는 체공시간은 여전히 아킬레스건이라는 것입니다.


한편 KT의 드론 LTE에 국내 처음으로 재난 통신망에 의한 원격 제어 시험을 성공적으로 마친 한 국내 기업이 자동항법 기능을 갖춘 100만원대 상업용 드론 개발에 성공하였다고 알려집니다. 이는 가격 경쟁력을 무기로 개인 취미용 소형 드론 시장을 석권하고 있는 중국을 따라잡을 수 있는 혁신적인 제품으로 평가받고 있다는 것입니다.


이는 전파항법 전문기업으로 알려진 두시텍(DusiTech)이라는 기업으로 신개념 상업용 드론인 '케이엔드론(KnDrone)'을 개발하였고 곧 본격 양산한다고 밝히고 있습니다. 이 케이엔드론은 스스로 목적지까지 찾아가 임무를 수행할 수 있는 자동항법 기능을 내장하여 수동 조종기 필요 없이 중앙통제시스템이 원격 비행명령으로 임무를 수행할 수 있도록 해준다는 것입니다.






현재 3D 지형정보 등 정밀 좌표 촬영 임무를 수행하거나 무인수송 등 자동이착륙이 가능한 무인 비행기는 모두 자동항법 기능을 갖춰야 하며, 전 세계적으로 자동항법 기능을 갖춘 드론은 대당 가격이 수천만원을 호가하여 민간에서 상업용으로 활용하기에는 가격이 너무 비싸 일부 군수용으로만 활용되어 왔다고 전해집니다.


실제로 민간에서 사용되는 드론은 사람이 수동조작기로 드론이 해당 목적지에 도착할 때까지 일일이 수동으로 조작하는 방식으로 대당 가격은 자동항법 기능을 갖춘 고가 제품보다 적지만 수백만원으로 가격 경쟁력이 뛰어나다는 중국산 드론도 300만원대에 판매되고 있는 실정이라는 것입니다.


이에 케이엔드론은 자동항법 기능을 갖추고 중국산 드론과 견줘도 가격은 1/3 수준으로 가격 경쟁력까지 모두 잡은 혁신적인 제품으로, 제조사인 두시텍은 드론 핵심기술인 위성항법, 관성항법 원천기술을 보유하고 있으며, 그동안 항공, 우주, 해양, 철도 등 공공서비스 및 국방시장에서 다양한 프로젝트 수행 경험과 풍부한 노하우로 기술력을 인정받았다는 것입니다.


게다가 드론 생산에 필수적인 센서 품질을 고가 센서 수준으로 필터링할 수 있는 기술도 두시텍만의 경쟁력으로 꼽을 수 있는데, 필터 기술은 전파를 노이즈 없이 깨끗하게 찾아내는 기술로, 신호 품질을 좌우한다는 것입니다. 뿐만아니라 위성항법장치(GPS), 자이로, 지자기센서, 온도센서, 고도센서 등 핵심 센서 7~8개를 융합할 수 있는 기술력도 갖추고 있는데, 이들 센서 간 융합은 드론의 안정적 비행에 없어서는 안 될 핵심 기술이라 알려집니다.




Posted by Nature & Life