'스칼라 제어'에 해당되는 글 2건

  1. 2015.12.23 토크 제어와 자속 기준 제어(FOC)
  2. 2015.12.09 BLDC vs. PMSM


유도 전동기나 PMSM을 포함한 BLDC 모터의 토크(Torque)는 회전자인 영구 자석의 회전으로 인한 역기전력(BEMF)과 고정자에 흐르는 3상 전류에 비례합니다. 여기서 역기전력은 시간에 따른 쇄교 자속의 변화율로 고정자 권선에 의해서 발생하는 자속과 회전자 영구 자석에 의해서 생성되는 자속이 쇄교(직교)하는 시점에서 최대가 됩니다. 모터에서 생성되는 토크는 다음과 같습니다.



여기서 Te는 electromagnetic 토크를 의미하고 K는 관련상수이며, λ는 회전자에 의한 쇄교 자속이고 전류 i와 마찬가지고 3상의 net한 공간 벡터입니다.



토크는 역기전력에 비례하므로 방향은 플레밍(Fleming)의 오른손 법칙을 따르고 벡터의 외적(cross product)으로 공간 벡터 λ와 i에 의해서 형성되는 위 그림과 같이 면적과 같습니다. 만일 물리적 3상 좌표계에서 보다 직관적인 2축 직교좌표계로 변환을 하면 다음과 같습니다.



공간 벡터 λ와 i를 d-q 좌표축에 투영하면 두 점 (λd, λq), (id, iq)을 구할 수 있고, 원점과 함께 삼각형의 면적을 구하는 헤론(Heron)의 공식을 적용하면 다음과 같이 정리할 수 있습니다.



만일 자속을 나타내는 공간 벡터 λ가 d축과 일치하고, 자속의 시정수가 전류의 시정수보다 훨씬 커서 순시적으로 자속이 일정하다고 가정하면 이 때 λq=0가 되어 토크는 다음과 같이 간략화됩니다.



이는 토크를 3상 전류 공간 벡터 i의 q축 성분만을 조절하여 제어할 수 있음을 의미합니다. 즉, 자속을 기준하여 3상 공간상에서 전류의 크기와 방향을 제어하는 기법을 자속 기준 제어(Field Oriented Control; FOC) 혹은 벡터 제어라고 부릅니다.


위와 같은 제어를 위해서는 예를 들어 3상의 전류 공간 벡터를 직교하는 2차원 좌표계로 변환할 필요가 있으며, 회전자의 위치에 따라서 지속적인 토크 발생을 위해 d축을 회전자의 자속의 방향과 일치시킬 필요가 있습니다. 전자는 Clarke 변환(α-β 좌표계)이고 후자를 Park 변환(d-q 좌표계)이라고 말하며 이에 역변환(inverse transformation)도 필요하게 됩니다.





'Flight Controller 이해 > 모터제어이론' 카테고리의 다른 글

릴럭턴스 토크  (1) 2016.01.27
Clarke vs. Park 변환  (4) 2015.12.24
모터의 회전자계  (1) 2015.12.17
모터의 토크 발생원리  (2) 2015.12.12
BLDC와 PMSM의 구조  (0) 2015.12.12
Posted by Nature & Life


Drone의 기체에 추력을 내기 위해서 사용되는 모터는 그동안 BLDC(Brushless Direct Current) 모터가 주류를 이루었지만, 후술되는 장점으로 인하여 최근에는 PMSM(Permanent Magnet Synchronous Motor)으로 교체되는 추세에 있습니다. BLDC 모터와 PMSM 두 모터는 회전자(rotator)가 영구자석(permanent magnet)으로 3상인 기본적인 구조는 유사하며, 주된 차이는 모터가 회전시 각각 역기전력(Back EMF)이 사다리꼴파(Trapzoidal)와 정현파(Sinusoidal)라는 것입니다.


넓은 의미에서 BLDC 모터(BLDCM)는 PMSM을 포함하며 일반적인 DC 모터와의 장점은 이전글인 'BLDC의 장단점'을 참조하시기 바랍니다. 모터의 회전원리는 쉽게 말해 영구자석으로 이루진 회전자는 전류를 공급하는 3상의 권선이 감겨져 있는 고정자(stator)에 전원을 회전자계가 발생하도록 적절히 공급하고, 이때 회전자는 고정자의 회전자계와 동기화(Syncronous)되어 회전하게 된다는 것입니다. 


이와 같이 전원을 공급하는 경우, BLDC는 6-step commutation이라는 전기각의 매 60도 간격으로 전류의 크기와 방향을 바꾸는 스칼라 제어(Scalar 제어)를 사용하는 반변에, PMSM에서는 공간벡터제어(Space Vector Control)라는 기법으로 전체 사이클에 대해서 전류의 크기와 방향을 제어하여, 토크(torque) 직접제어가 가능하고, 속도제어, 위치제어 등에서 탁월한 성능을 발휘한다는 것입니다. FOC(Field-Oriented Control)로 알려진 공간벡터제어(Space Vector Control) 기법으로 구동되는 PMSM을 BLAC(Brushless AC)로 부르기도 합니다.


다음은 BLDC 모터와 PMSM의 차이입니다.


 

BLDC

PMSM

권선형태

대부분 집중권(concentrating winding)

각 상을 분산시킨(pole 수를 증가시킨) 분산권(distributed winding)

용도

고토크, 고속도 제어

고효율, [위치제어] 정밀 서보

 인버터 효율

High

Low

모터 효율

Low

High

모터 비용

Low

Medium

역기전력 & 전류

사다리꼴파 & 구형파

모두 정현파

제어방식

6-step trapzoidal 방식의 비교적 간편한 스칼라 제어(scalar control)

 - 전류 제어 및 토크 최적화 불가능

 - 느린 응답

 - 저속 및 고속에서 토크 전달이 비효율적

 - 낮은 토크에서 비효율적

 - 저속에서 뛰어나지만 내부 손실이 많다

 - 저속에서 개방제어로 큰 부하에서 가속이 어렵다

 - 고속에서 제어가 상대적으로 어렵다

 - 6-step 방식으로 토크리플(맥동 토크) 발생

 - 가청 소음(잡음)이 있다

 - 발열이 있어 영구자석이 자성을 잃으면 토크가 감소한다

 - 분배 와인딩에서 작동하지 않음

 - 낮은 비용

연속 3상 정현파의 비교적 복잡한 벡터 제어(vector control) 혹은 FOC(Field-Oriented Control)

 - 시작시 최대 토크

 - 전류로 제어

 - 속도와 토크의 독립적인 제어

 - 최대 토크와 속도 범위에서 최적의 제어 가능

 - 높은 토크에서 비교적 높은 효율

 - set point나 연속 부하 변화에 부드럽고 상대적으로 빨리 반응하고 토크, 속도, 위치를 맟힐 수 있다

 - 상대적으로 높은 최대 가능 속도

 - 120도 위상차를 갖는 3상의 정현파의 합은 동일하므로 토크는 일정

 - 연속 정현파 곡선제어에 기반하여 잡음이 적다

 - 저비용 분배 와인딩에서 작동

 - 전기적인 브레이크와 홀드

 - 낮은 발열

 - 보다 효율적인 전력 사용

 - 비교적 높은 비용

 - 모터 설정이 복잡하다

Sensorless Drive

Low to Medium

High




6-step보다 많은 상태를 이용해 위치를 제어할수록 위치 정밀성과 알고리즘 복잡성도 높아집니다



'Flight Controller 이해 > 모터제어이론' 카테고리의 다른 글

모터의 토크 발생원리  (2) 2015.12.12
BLDC와 PMSM의 구조  (0) 2015.12.12
BLDC와 PMSM의 토크  (0) 2015.12.10
BLDC의 장단점  (0) 2014.04.03
BLDC모터란?  (0) 2014.04.01
Posted by Nature & Life