유도 전동기의 축 안으로 바라다 본 단면은 아래 그림과 같고 120도 간격으로 배치된 실제의 3개의 상 혹은 권선은 a, b, c로 나타낼 수 있으며, 각 상(권선)에 흐르는 전류는 ia, ib, ic는 전체 is = ia + ib + ic로 나타낼 수 있습니다. 여기서 전류는 위상을 가진 값으로 복소수 형태로 나타낼 수 있으며, 각 상의 전류는 벡터로 방향이 오직 a축, b축 그리고 c축 상에서만 움직이는 값이 갖게 됩니다. 따라서 net한 전체 is는 각 전류 벡터의 합으로 시간에 따라 변하는 일정한 크기와 방향을 갖는 공간 벡터(space vector)가 됩니다.
여기서 이고 위의 3상의 공간 벡터를 쉽게 다루기 위해서 2차원의 직교 좌표시스템으로 변경할 수 있습니다. 만일 이 좌표시스템을 한 축이 3상의 a상 축과 일치하는 α축과 이에 수직인 β축이라 명명하면 각 상을 2차원의 α-β 직교 좌표계로 다음과 같이 투영할 수 있습니다.
이를 컴퓨터 계산이 용이한 행렬식의 형태로 나타내면 다음과 같습니다.
이를 Clarke 변환이라고 합니다. 3상의 전류 ia, ib 그리고 ic를 최대치가 이고 a상으로부터 순서데로 120˚의 위상차를 갖는 정현파(sinusoidal) 전류로 고려하면 공간 벡터 is는 다음과 같습니다.
이 때 위 가정으로부터 이므로 위 식은 다음과 같이 정리됩니다.
위 식에서 와 는 α-β 좌표계의 단위벡터이며 ω는 각속도이고 삼각함수 합의 공식을 이용하여 정리하면 다음과 같습니다.
이 공간 벡터 is는 각 상에 흐르는 전류의 크기에 1.5배로 균일함을 알 수 있습니다. 위 식을 오일러(Euler) 공식을 이용하여 변형하면 다음과 같습니다.
그러므로 각속도 ω로 반시계 방향으로 회전하고 음의 β축에서 시작하는 회전전류임을 알 수 있습니다. 결론적으로 각 상에 120˚ 위상차를 갖는 정현파 전류를 a상을 기준으로 인가하면, 공간 벡터 is는 음의 β축에서부터 시작하여 1.5배의 일정한 크기로 반시계 방향으로 부드럽게 회전하게 된다는 것입니다.
위와 같이 120˚ 위상을 갖는 3상 정현파 전류를 인가한 고정자의 동일한 조건에서 고정자에서 발생한 자속 밀도는 암페어(Ampere) 법칙에 의해 전류와 비례하므로 유도 전동기이든 PMSM을 포함한 BLDC 모터이든 총 net 전류 is와 같이 총 net 자속 밀도도 동일하게 한 상이 갖는 최대 자속 밀도의 1.5배로 회전하는 자속(회전자계)이 생기게 된다는 것입니다.
이러한 회전자계는 물리적인 고정자 안에 즉, abc 좌표계에서 N극과 S극으로 나타낼 수 있는데, 공급되는 전류의 주기마다 고정자 주위를 1회전하게 되며, 이 모터를 구동하기 위해서는 회전자의 영구 자석에서 발생하는 자속 밀도와 항상 쇄교(90˚)하도록 고정자에 정현파 전류를 흘려야 한다는 것입니다.
'Flight Controller 이해 > 모터제어이론' 카테고리의 다른 글
Clarke vs. Park 변환 (4) | 2015.12.24 |
---|---|
토크 제어와 자속 기준 제어(FOC) (0) | 2015.12.23 |
모터의 토크 발생원리 (2) | 2015.12.12 |
BLDC와 PMSM의 구조 (0) | 2015.12.12 |
BLDC와 PMSM의 토크 (0) | 2015.12.10 |