'플레밍의 왼손 법칙'에 해당되는 글 2건

  1. 2015.12.12 모터의 토크 발생원리 2
  2. 2014.04.01 BLDC모터란?


다음 그림은 DC 모터의 토크 발생 원리를 설명하기 위한 개념도입니다.



위 그림과 같이 DC 모터에 전압 v를 인가하여 권선에 전류 i가 흐를 경우, 발생할 토크(회전력)는 위와 같이 플레밍(Fleming)의 왼손 법칙에 의하여 다음과 같습니다. 여기서 2는 회전축을 중심으로 같은 힘 F가 토크에 기여하기 때문이며 F는 로렌쯔(Lorentz)의 힘입니다.

τ = 2rF = 2ri(l x B)

그러므로 선분 ad와 bc는 위치에 따라서 힘이 작용할 수는 있지만 토크에는 기여하지 못하고, 선분 ab와 cd에서만 회전에 기여하는 토크가 발생합니다. 한편 페러데이(Faraday) 법칙에 의해서 기전력(electromagnet force) e는 다음과 같습니다. 여기서 속도 v = dx/dt = rdθ/dt = rω이고 ω는 각속도입니다. 





e = -dψ/dt = -BdA/dt = -Bldx/dt = -Blv = -Blrω

권선 길이 l 성분은 자속 밀도 B와 수직하므로 유도 기전력을 사용하여 토크의 크기를 다시 나타내면 다음과 같습니다. 결국 회전자를 영구 자석으로 고려하면 고정자 권선에 걸리는 역기전력은 오직 각속도에 비례함을 알 수 있습니다.

τ = 2rF = 2rilB = 2/ωei

따라서 토크는 고정자 권선에 흐르는 전류에 비례하고, 회전자의 회전으로 인해 고정자 권선에 유기된 역기전력에 비례함을 나타냅니다.


교류 모터의 원리


영구 자석이 회전하는 BLDC 모터나 PMSM를 고려하면 자속 밀도 B가 변화하므로 토크는 다음과 같이 쓸 수 있습니다. 

τ = 2rilBsinθ

고정자 권선에 i라는 전류가 흐르면, 권선이 이루는 면에 수직으로 발생하는 자속 밀도 Bs의 크기는 암페어(Ampere) 법칙에 의해서 전류 i에 비례하므로 Bs = Gi라 하면 다음과 같이 됩니다. 단, G는 루프의 형태와 관련된 상수입니다.

τ = 2rilBsinθ = 2rl/G·Bs·Bsinθ

여기서 k = 2rl/G라 하여 기기의 구조에 의존하는 값으로 정의하면 일반적인 토크는 다음과 같이 나타낼 수 있습니다.

τ = k·Bs·Bsinθ = k·(Bs×B)

그러므로 토크는 권선에 의한 자속 밀도와 영구 자석에 의한 자속 밀도의 방향이 쇄교(orthogonal, perpendicular)할 때 최대가 되고 같을 때 0이 됩니다. 이는 두 자계의 방향이 서로 일치하려는 작용에 의해 토크가 발생하고 회전자의 자계가 고정자의 자계와 일치하는 방향으로 토크가 발생한다는 것입니다. 위 그림에서 θ가 0도인 경우는 회전 토크에 기여하지 못하는 것으로 다른 말로 쇄교하는 자속 밀도가 시간에 따라 변화가 없어 역기전력은 0이 되어 토크가 없다고 의미와 같습니다.


다음 그림에서 고정자 b에 전류를 인가하면 영구 자석의 N 혹은 S극이 b상으로 정렬되고 이때 힘(인력) F는 최대이지만 회전자의 회전에는 전혀 기여하지 않게 됩니다. 소위 고정자의 자계가 회전한다면, 회전자에서 고정자 자계를 따라가기 위해 토크가 계속 발생하는 것이 모터의 회전 원리라는 것입니다.




위의 원리는 회전자인 영구 자석 대신에 이를 권선으로 대치한 유도(Induced) 모터에도 같은 원리가 적용되고 요약하면 다음과 같습니다. 여기서 k'에 관련된 상수입니다.

τ = k·(Bs×B) = k'/ω·e·i

      • [abc 상(좌표계) 관점에서] 토크는 고정자 권선에 의한 자속 밀도와 회전자 영구 자석에 의한 자속 밀도의 방향이 쇄교(90˚)할 때 최대가 됩니다.

      • [시간의 관점에서] 토크는 고정자 권선에 전류가 클수록 그리고 역기전력이 클수록 그리고 회전 속도가 작을수록 커지게 됩니다. 


이는 DC 모터의 정상상태 방정식 V = Ri + Ldi/dt + e으로부터 고정자에 일정한 전류 i가 인가된 정상상태에서 전류를 증가시키면 토크가 증가하여 회전 속도가 증가하지만 이로 인해 역기전력이 증가하고 상대적으로 고정자에 권선에 걸리는 전압의 감소는 전류의 감소로 이어저 결국 주어진 전류에 토크(회전 속도)는 균형을 이루게 됩니다.


요약하면, 회전하는 모터의 고정자를 손으로 정지시키면 고정자의 권선에 흐르는 전류가 증가하여 토크가 증가하는데, 이는 회전하려는 힘이 스스로 증가하려는 것으로 전형적인 DC 모터의 특성이며, PMSM을 포함하는 BLDC 모터를 '-DC'로 표현하는 것은 DC 모터의 특성을 닮았기 때문입니다.


3상(abc)의 고정자 권선을 가지는 유도 전동기나 PMSM을 포함한 BLDC 모터를 최대의 토크를 유지하며 구동하기 위해서는 abc 좌표계에서 회전자에서 발생하는 자속 밀도가 고정자에서 발생하는 자속 밀도와 항상 쇄교(90˚)하도록 해야 하며, 이는 타임 도메인(시변 좌표계)에서 회전자의 회전으로 인해 고정자 권선에 유기되는 역기전력과 고정자 권선에 인가되는 전류가 동상(in phase)이 되도록 해야 한다는 의미입니다.



※ 플레밍(Fleming)의 법칙


유도기전력의 방향


전기가 흐르는 도체가 받는 힘





'Flight Controller 이해 > 모터제어이론' 카테고리의 다른 글

토크 제어와 자속 기준 제어(FOC)  (0) 2015.12.23
모터의 회전자계  (1) 2015.12.17
BLDC와 PMSM의 구조  (0) 2015.12.12
BLDC와 PMSM의 토크  (0) 2015.12.10
BLDC vs. PMSM  (0) 2015.12.09
Posted by Nature & Life

 

 

모터(motor)란 전기에너지를 이용하여 회전 토크(torque)를 얻는 장치로, RC에서는 로터(rotor)를 회전시켜 양력을 얻기 위해 반드시 필요합니다. 과거에는 DC 모터를 이용하였지만 최근에는 비용을 최소화하기 위한 초소형 기체를 제외하고는 Brushless DC 모터를 채택하게 된다고 알려집니다.

 

Brushless DC 모터란 Brush가 없는 DC 모터로 이하 BLDC로 약칭합니다. BLDC가 대중화된 이유는 여러가지가 있을 것입니다. 아래는 일반적인 DC 모터의 내부 모습니다. 케이스 안쪽에 영구자석을 부착하고 철심(core)에 코일(coil)을 감은 회전자(rotator)를 서로 베어링을 이용해 고정하고 Brush를 이용하여 DC 전압을 회전자에 급전하면 플레밍의 왼손 법칙에 의해 회전하게 됩니다.

 

 

 

 

이때 Brush는 기계적인 기구로 회전자에 의해 접점이 마찰되면서 닳을 수 밖에 구조이며, 회전시 모터의 역기전력(Back Ekectro-motive Force, BEMF)과 합세하여 스파크를 발생시키고 어쿠스틱 소음(acoustic noise)을 만들게 됩니다. 이러한 스파크와 소음은 결국 밧데리의 소모를 부추기게 됩니다.

 

BLDC 모터를 사용하면 우선 Brush로 인한 스파크와 소음이 없어져 반영구적인 모터의 수명 뿐만아니라 밧데리의 효율을 증가시켜 RC 기체의 체공시간을 길게 만들어 줍니다. 또한 일반 DC 모터의 소음은 콘덴서를 모터의 양 단자에 연결하여 줄일 수는 있지만, MCU 기반에 정교하게 동작하는 비행제어기(Flight controller)나 전자변속기(Electronic Speed Controller, ESC)의 오동작을 초래할 수도 있다는 것입니다.

 

기존의 RC 기체는 동력원으로 엔진을 사용하였지만 근래에 밧데리 용량과 방전 특성 그리고 안전성이 크게 개선된데다가 BLDC 모터의 채용으로 중소형 기체에서는 엔진에서 모터로 옮겨가는 추세라는 것입니다. 이로 인하여 엔진을 사용시 연료나 그으름으로 누더기 되었던 기체의 관리가 쉬워졌고 소음이 줄어들어 정숙비행이 가능해졌다는 것입니다.

 

Brush를 사용한 DC 모터와는 달리, BLDC 모터는 철심에 코일이 감긴 고정자(stator)와 안쪽에 자석이 부착된 케이스로 구성되어 케이스가 회전하는 소위 '통돌이 모터'라고도 부릅니다. 하지만 기계적 기구인 Brush가 하던 일을 다른 방식으로 해주어야 하니 전자변속기라는 별도의 제어기가 필요하게 됩니다.

 

 

 

 

RC용 전자변속기는 대부분 마이크로컨트롤러(MCU)와 H-bridge를 구성하는 트랜지스터들과 그 주변회로 구성되며, 현재 회전자의 위치를 파악하여 다음 위치로 회전시키기 위한 구동 신호를 가하는 방식으로 동작합니다.

 

일반적으로 산업용으로 사용되는 BLDC 모터는 엔코더(encoder)라는 장치나 홀센서(Hall sensor)가 모터에 부착되어 회전자의 현재 위치를 알려주는데 RC에 사용되는 BLDC 모터는 이러한 장치가 없어 전자변속기를 더욱 복잡하게 만듭니다. 하지만 고성능 MCU의 출현으로 어렵지 않게 구현이 가능해졌는데 이러한 기술 또한 엔진을 전기모터로 대체하는 요인 중에 하나가 될 것입니다.

 

통상 홀센서를 가지는 BLDC 모터는 전력을 공급받는 3상의 리드선과 별도의 홀센서 리드선이 다수가 필요하여 신뢰성이 중요한 RC 기체에서는 꺼리게 되었지만, 그 보다도 RC 기체가 비행하는 외부조건이 다양한데 홀센서는 이러한 외부조건에 취약하고 [기계적] 엔코더 타입의 모터는 소형화와 경량화가 어렵다는 것입니다.

 

 

'Flight Controller 이해 > 모터제어이론' 카테고리의 다른 글

모터의 토크 발생원리  (2) 2015.12.12
BLDC와 PMSM의 구조  (0) 2015.12.12
BLDC와 PMSM의 토크  (0) 2015.12.10
BLDC vs. PMSM  (0) 2015.12.09
BLDC의 장단점  (0) 2014.04.03
Posted by Nature & Life