'Kalman gain'에 해당되는 글 1건

  1. 2017.11.25 MPU6050의 칼만 필터(Kalman filter)의 구현 예제(2) 1


아두이노(Arduino) 환경에서 전형적인 MPU6050 센서 입력에 사용되는 칼만 필터(Kalman filter)의 예제입니다.

http://blog.tkjelectronics.dk/2012/09/a-practical-approach-to-kalman-filter-and-how-to-implement-it/#comment-57783


한편 의 관측 혹은 측정을 위한 식은 다음과 같이 주어집니다.



위 식에서와 같이 는 현재 상태 가  행렬과 곱하여지고 측정 잡음 와 합하여 집니다.


는 관측 모델로 불려지며 실제 상태 공간을 관측된 상태의 공간으로 매핑하기 위해서 사용되어집니다. 실제 상태는 관측될 수 없는데 이는 측정이 단지 가속도계로부터의 측정에 불과하기 때문입니다.


는 다음과 같습니다.



측정 잡음은 게다가 '0'의 평균과 다음과 같이 의 공분산을 가져야 합니다. 



그러나 은 행렬이 아니기 때문에 측정 잡음은 단지 측정값의 분산과 같습니다. 왜냐하면 같은 변수의 공분산은 분산과 같기 때문입니다. 그러므로 우리는 R을 다음과 같이 쓸 수 있습니다.



우리는 측정 잡음은 동일하고 시간 k에 의존하지 않는다고 가정합니다.



만일 여러분이 측정 잡음 분산 을 너무 높게 설정하면 필터는 너무 늦게 응답하는데 이는 새로운 측정값을 덜 믿기 때문이며, 반면에 너무 낮게 설정한다면 값은 오버슈트(overshoot)가 발생하고 잡음이 많은데 이는 우리가 가속도계 측정값을 너무 많이 믿기 때문임을 참고하세요.


그래서 여러분은 프로세스 잡음 분산 와  그리고 측정 잡음 의 측정 분산을 찾아야만 합니다.


Time Update("Predict")


처음 2개의 방정식에서 시간 k에서 우리는 현재 상태와 오차 공분산 행렬을 예측할 것입니다. 우선 필터는 모든 이전 상태들과 자이로 측정으로부터 근거 된 현재 상태를 추정할 것입니다.



위 식의 우측 두번째 항을 제어 입력이라고 부르는 이유는 우리가 현재 시간 k에서 상태를 추정하기 위해 이를 추가적인 입력으로 사용했기 때문입니다. 다음은 우리가 이전 오차 공부산 행렬 에 근거하여 다음에 정의된 것처럼 오차 공분산 행렬 을 추정할 것입니다.



이 행렬은 추정된 상태의 현재 값을 얼마나 많이 신뢰하는가를 추정하기 위해서 사용되어집니다. 작을수록 우리는 좀더 현재 추정된 상태를 신뢰하게 됩니다. 위 방정식의 원리는 실제로 이해하기에 매우 쉽습니다. 이는 우리가 상태의 추정을 마지막 갱신한 후에 오차 공분산은 증가하는 것이 매우 분명하기 때문입니다. 그러므로 우리는 오차 공분산 행렬을 상태 전이 모델 과 그 행렬의 전치행렬 을 곱하고 시간 k에서 현재 프로세스 잡음 를 더합니다.


오차 공분산 행렬 는 2x2 행렬입니다.



Measurement Update("Correct")


우리가 계산해야 할 첫번째 일은 측정치 와 보정되지 않은 이전 상태로부터 예측된 상태 변수 사이에 차를 계산하는 것입니다.



여기서 관측 모델 는 이전 상태 추정치를 관측된 공간과 매핑하게 위해서 사용되어집니다. 관측 공간이라 함은 가속도계로부터의 측정치로 그러므로 위 식은 행렬이 아닙니다.



다음에 할 것은 를 계산하는 것입니다.



이전 오차 공분산 행렬 와 측정 공분산 행렬 에 근거한 측정을 얼마나 믿을 수 있는지 예측하는 것입니다. 관측 모델 는 이전 오차 공분산 행렬 를 관측 공간으로 매핑하기 위해서 사용되어집니다.

큰 측정 잡음은 값을 크게 합니다. 이는 입력되는 측정값을 그렇게 많이 신뢰할 수 없음을 의미합니다. 이 경우 는 행렬이 아니고 다음과 같이 쓸 수 있습니다.



다음 단계는 칼만 이득(Kalman gain)을 계산하는 것입니다. 칼만 게인은 측정치 와 이전 상태 변수와의 차이를 얼마나 신뢰할 수 있는지를 나타내는데 사용되어집니다.



만일 우리가 그 차이를 도저히 신뢰하지 못한다면, 차이에 대한 공분산 는 높게 될 것입니다. 그리고 만일 우리가 추정된 상태를 신뢰한다면 오차 공분산 행렬 는 작게 될 것이고 칼만 이득도 작아질 것입니다. 반대로 차이를 신뢰하지만 현재 상태의 추정치를 믿지 못한다면 반대가 될 것입니다.

여기서 관측 모델 H의 전치행렬이 오차 공분산 행렬 P를 관측 공간으로 매핑하는데 사용되어짐을 알 수 있습니다. 그다음 우리는 공분산 S로 나누어 오차 공분산 행렬을 비교합니다.

이는 관측 모델 H를 상태 오차 공분산을 빼기 위해서 그리고 S의 현재 추정치와 비교하기 때문에 의미가 있다는 것입니다. 만일 여러분이 초기에 상태를 모른다면 오차 공분산 행렬을 다음과 같이 설정할 수 있다.



여기서 은 큰 숫자를 대표하며 초기에 상태가 알려진다면 오차 공분산 행렬을 다음과 같습니다.



칼만 이득은 2x1 행렬입니다.



우리는 추정된 현재 상태를 보상합니다.




이는 yk와 칼만 이득을 곱하여 보상되지 않은 현재 상태에 더하는 것입니다.


는 측정된 와 보상되지 않은 추정된 현재 상태의 차이로 양수나 음수가 될 수 있습니다.


가장 간단화된 방정식은 보상되지 않은 현재 추정 상태 를 가속도계 측정값으로 간단하게 바로잡는 것으로 이해할 수 있습니다.

여기서 는 이전 상태와 자이로 측정값으로부터 계산되어진 것입니다.


마지막으로 우리는 보상되지 않은 오차 공분산 행렬을 갱신하는 것입니다.



여기서 I는 항등행렬입니다.



필터가 하는 일은 기본적으로 얼마나 많이 우리가 추정치를 바로잡았는가에 근거하여 오차 공분산 행렬을 스스로 바로잡는 것입니다. 이것은 우리가 이전의 오차 공분산 과 공분산 에 근거된 상태를 바로잡았기 때문에 의미가 있다는 것입니다. 



Posted by Nature & Life