'Park 변환'에 해당되는 글 2건

  1. 2015.12.24 Clarke vs. Park 변환 4
  2. 2015.12.23 토크 제어와 자속 기준 제어(FOC)


3상 공간 좌표계는 abc 좌표계 혹은 정지(ω=0) 좌표계(Stationary Reference Frame)라고도 합니다. 3상 좌표계의 a상이 발생시키는 자속의 방향과 일치하는 α축과 이에 직교하는 β축을 갖는 2차원 좌표계로의 변환을 Clarke 변환이라고 하며 이를 α-β 좌표계, d-q 정지 좌표계 혹은 회전자 좌표계(Rotor Reference Frame)라고 명명합니다.



실제로는 abc 좌표계에서 αβγ 좌표계 혹은 dq0 정지 좌표계로의 변환인데, γ축 혹은 0축은 α-β 평면 혹은 d-q 평면에 수직(법선)한 방향으로 다음 그림과 같이 3x3 정방행렬식을 갖습니다. 여기서 행렬 원소의 2π/3 항은 3상 권선들이 120˚ 등간격으로 배치되었음을 의미합니다.



위 행렬식에서 3번째 행은 가 되는데 3상 전류 뿐만아니라 전압, 자속 등이 서로간에 120˚의 위상차를 갖는다면 balanced 조건을 만족하여 0이 되어 무시되어 집니다. 이를 0축분 혹은 영상축분이라 부르고 영상축분이 0이 되면 abc 좌표계는 2차원 직교 좌표계로 단순화되어 시스템을 쉽게 다룰 수 있다는 것입니다. 여기서 k1과 k2는 balanced 계수입니다. 일반적으로 변환 전후에 공간 벡터를 크기를 동일하게 하도록 balanced 계수 k1=2/3로 선택하고 생략되지 않는다면 k2=1/2가 됩니다.


또한 회전자(ω=ωr) 좌표계(Rotor Reference Frame)를 회전자의 위치 즉, 기준 자속의 angle(θ)를 알아내고 여기에 자속 성분을 일치시키기 위해서는 angle(θ) 만큼 원점을 중심으로 회전시켜야 합니다. 이와 같은 변환을 Park 변환이라고 하며 d-q 동기 좌표계, de-qe 좌표계 혹은 동기(ω=ωe) 좌표계(Synchronous Reference Frame)라고 명명합니다.


abc 좌표계에서 d-q 좌표계로 바로 변환하려면 위 그림으로부터 다음과 같습니다.



반대로 d-q 좌표계에서 abc 좌표계로 역변환하려면 행렬식 연산을 이용하여 위 식으로부터 다음과 같습니다. 비정방행렬이라 역행렬(inverse matrix)이 존재하지 않는 것처럼 보이지만 실제로는 d-q좌표계에 영상분(중성)축 0축을 고려한 3x3 정방행렬로 계산하고 balanced 조건하에서 영상분을 다시 제거한 것입니다.



위와 같은 좌표계 변환은 abc 좌표계에서 balanced 조건하에서 전류 뿐만아니라 전압, 자속 등의 변환에 사용할 수 있습니다. 만일 기준 자속의 angle(θ)을 찾아내 실시간으로 회전자 좌표계의 d축과 일치시킨다면 회전자는 고정자의 회전자계와 같은 속도(synchronous)로 아래 그림과 같이 회전하게 됩니다.

 


이 때 고정자의 인가되는 전압과 전류 벡터는 회전자의 회전축에서 볼 때 항상 일정한 값으로 보인다는 것입니다. 그러므로 아래 그림에서처럼 d-q 좌표계는 abc와 α-β 좌표계와는 달리 시간에 따라 일정값을 보이게 됩니다. 즉, 이는 3상의 시변 시스템이 2축의 시불변으로 시스템으로 간주되어 이와 같이 변환이 제어를 용이하게 한다는 것입니다.

 






'Flight Controller 이해 > 모터제어이론' 카테고리의 다른 글

PMSM의 토크 제어 방법  (0) 2016.01.28
릴럭턴스 토크  (1) 2016.01.27
토크 제어와 자속 기준 제어(FOC)  (0) 2015.12.23
모터의 회전자계  (1) 2015.12.17
모터의 토크 발생원리  (2) 2015.12.12
Posted by Nature & Life


유도 전동기나 PMSM을 포함한 BLDC 모터의 토크(Torque)는 회전자인 영구 자석의 회전으로 인한 역기전력(BEMF)과 고정자에 흐르는 3상 전류에 비례합니다. 여기서 역기전력은 시간에 따른 쇄교 자속의 변화율로 고정자 권선에 의해서 발생하는 자속과 회전자 영구 자석에 의해서 생성되는 자속이 쇄교(직교)하는 시점에서 최대가 됩니다. 모터에서 생성되는 토크는 다음과 같습니다.



여기서 Te는 electromagnetic 토크를 의미하고 K는 관련상수이며, λ는 회전자에 의한 쇄교 자속이고 전류 i와 마찬가지고 3상의 net한 공간 벡터입니다.



토크는 역기전력에 비례하므로 방향은 플레밍(Fleming)의 오른손 법칙을 따르고 벡터의 외적(cross product)으로 공간 벡터 λ와 i에 의해서 형성되는 위 그림과 같이 면적과 같습니다. 만일 물리적 3상 좌표계에서 보다 직관적인 2축 직교좌표계로 변환을 하면 다음과 같습니다.



공간 벡터 λ와 i를 d-q 좌표축에 투영하면 두 점 (λd, λq), (id, iq)을 구할 수 있고, 원점과 함께 삼각형의 면적을 구하는 헤론(Heron)의 공식을 적용하면 다음과 같이 정리할 수 있습니다.



만일 자속을 나타내는 공간 벡터 λ가 d축과 일치하고, 자속의 시정수가 전류의 시정수보다 훨씬 커서 순시적으로 자속이 일정하다고 가정하면 이 때 λq=0가 되어 토크는 다음과 같이 간략화됩니다.



이는 토크를 3상 전류 공간 벡터 i의 q축 성분만을 조절하여 제어할 수 있음을 의미합니다. 즉, 자속을 기준하여 3상 공간상에서 전류의 크기와 방향을 제어하는 기법을 자속 기준 제어(Field Oriented Control; FOC) 혹은 벡터 제어라고 부릅니다.


위와 같은 제어를 위해서는 예를 들어 3상의 전류 공간 벡터를 직교하는 2차원 좌표계로 변환할 필요가 있으며, 회전자의 위치에 따라서 지속적인 토크 발생을 위해 d축을 회전자의 자속의 방향과 일치시킬 필요가 있습니다. 전자는 Clarke 변환(α-β 좌표계)이고 후자를 Park 변환(d-q 좌표계)이라고 말하며 이에 역변환(inverse transformation)도 필요하게 됩니다.





'Flight Controller 이해 > 모터제어이론' 카테고리의 다른 글

릴럭턴스 토크  (1) 2016.01.27
Clarke vs. Park 변환  (4) 2015.12.24
모터의 회전자계  (1) 2015.12.17
모터의 토크 발생원리  (2) 2015.12.12
BLDC와 PMSM의 구조  (0) 2015.12.12
Posted by Nature & Life