'Pitch'에 해당되는 글 3건

  1. 2017.03.14 관성측정장치(IMU)의 원리
  2. 2017.03.13 쿼드콥터용 비행제어기(FC)의 원리(1)
  3. 2017.03.04 모드 1 vs. 모드 2 1


3축 가속도와 3축 자이로 센서를 조합한 후 각각의 센서 출력을 내보내는 장치를 관성측정장치(IMU; Inertial Measurement Unit)이라고 부릅니다. 스마트폰에도 탑재되어 있을 정도로 그 용도가 근래에 흔하며, 비행기의 항법 장치에 필수적인 요소입니다. 기체의 자세 제어에 요구되는 롤(Roll), 피치(Pitch), 요(Yaw)의 기울어진 각도를 알기 위함으로, 롤은 좌우로 기울어짐, 피치는 앞뒤로 기울어짐, 요는 z축 방향으로 기울어짐(회전각)을 의미합니다. 여기서 롤과 피치는 중력방향을 기준으로 얼마나 기울어져 있는지를 나타냅니다.



이처럼 롤과 피치 그리고 요와 같은 자세 측정을 위해서는 필요한 장치가 자이로와 가속도 센서입니다.


MEMS 기반의 3축 가속도 센서(Accelerometer)는 x축, y축, z축 방향의 가속도를 측정할 수 있으며 단위는 [g]입니다. 가속도 센서는 정지한 상태에서 중력 가속도를 감지하기 때문에 z축 방향으로 -g 만큼의 값을 출력합니다. 센서의 초기 출력은 모두 '0'이라고 가정하고 센서를 y축 기준으로 45도 기울여 보면, 기울어진 상태에서 z축 방향과 x축 방향으로 동일한 값의 가속도가 측정되며 중력방향으로 g가 측정되어야 하므로 0.707g 만큼 z축과 x축 방향으로 값이 출력됩니다. 결과적으로는 z축과 x축 값의 비율을 arctan으로 계산하여 기울어진 값을 구할 수 있습니다.



그러나 정지 상태가 아닌 움직이는 가속 상태의 경우, 또다른 힘의 영향으로 중력 방향이 변한 것처럼 올바른 값을 얻을 수가 없습니다. 즉, 정지하지 않은 움직임 상태에서는 가속도 센서만으로 기울기 값을 측정할 수는 없습니다. 뿐만 아니라 z축상에 회전각인 요는 중력 방향(중력가속도)이 전혀 변하지 않으므로 측정이 불가능합니다.


3축 자이로 센서(Gyroscope)는 가속도를 측정하는 가속도 센서와 달리 각속도를 측정하므로 단위는 [degree/sec]입니다. 자이로는 각속도를 재는 장치이기에 이를 이용해서 각도를 알려면 전체 시간에 대하여 적분을 하여 얻게 됩니다. 그러나 센서에서 측정되는 각속도는 노이즈나 어떠한 이유에 의해 측정값에 에러가 계속 생기는데, 이 오차가 적분시에는 누적이 되어서 최종 값이 드리프트 되는 현상이 발생합니다. 게다가 시간이 지날수록 이 오차는 커져 각도가 변하게 된다는 것입이다.


결과적으로 정지상태의 긴 시간의 관점에서 보면 가속도 센서에 의해 계산된 각도는 올바른 값을 보여주지만, 자이로 센서에서는 시간이 지날 수록 틀린 값을 내보내게 됩니다. 반대로 움직이는 짧은 시간의 관점에서 보면 자이로 센서는 올바른 값을 보여주지만 가속도 센서는 다른 값을 내보내게 됩니다.


그러므로 가속도 센서와 자이로 센서를 모두 사용해서 각각의 단점을 보상할 수 있는 알고리즘을 적용하여 롤 또는 피치 값을 계산하여야 한다는 것입니다. 많이 사용하는 보상 방법 및 필터링으로는 칼만 필터(Kalman filter)의 적용입니다.


요의 회전축은 z축방향, 즉 중력방향과 같으므로 가속도 센서가 아닌 자이로 센서의 z축 값을 측정해서 이 값을 이용해 요값을 계산하여야 하고 드리프트되는 오차를 보상하는 다른 센서를 추가적으로 사용하는데, 이것이 지자기 센서(magnetometer or compass)입니다. 자이로는 온도가 변하면 그 값이 같이 변하는 특성이 있어 정교한 측정을 위해서는 온도 센서도 함께 사용해서 오차를 보상하기도 합니다. 이를 모두 고려하면 3축 가속도 센서, 3축 자이로 센서, 3축 지자기 센서를 내장한 IMU 센서를 9축 센서라 부르는 이유에서 입니다.



위 그림의 칩은 Invensense사의 9DOF IMU인 MPU-9150입니다. 이는 3축 자이로 센서와 3축 가속도 센서인 MPU-6050과 3축 지자기 센서(digital compass)를 One Pakage(SiP)하였으며, I2C(TWI)를 지원합니다. 여기서 DOF는 'Degree Of Freedom'의 약자로 '축(Axis)'을 의미합니다.



'Flight Controller 이해 > 센서' 카테고리의 다른 글

MPU6050 센서  (1) 2017.12.01
드론에 요구되는 각종 센서들  (0) 2017.02.26
Posted by Nature & Life


쿼드콥터(Quadcopter)는 다음 그림에서와 같이 모터 4개의 상대적인 회전속도에 의해 비행이 제어됩니다. 시계방향(CW)으로 회전하는 모터들에 장착되는 프로펠러를 '푸셔(Pusher) 프로펠러'라 부르고 반시계방향(CCW)으로 회전하는 모터들에 장착되는 프로펠러를 '트랙터(Tractor) 프로펠러'라 부릅니다.



  • Yaw Left - 시계방향으로 회전하는 모터 ①, ③의 회전속도의 합 > 반시계방향으로 회전하는 모터 ②, ④의 회전속도의 합

  • Yaw Right - 시계방향으로 회전하는 모터 ①, ③의 회전속도의 합 < 반시계방향으로 회전하는 모터 ②, ④의 회전속도의 합

  • Hovering - 시계방향으로 회전하는 모터 ①, ③의 회전속도의 합 = 반시계방향으로 회전하는 모터 ②, ④의 회전속도의 합


소위 Hovering(정지 비행)은 전체 토크(Torque)가 상쇄되어 드론이 공중에서 정지하는 것이며, 이러한 상황에서 모든 프로펠러들이 발생시키는 추력의 합이 드론의 무게보다 크거나 작을 경우, 드론은 수직으로 상승(Throttle Up) 혹은 하강(Throttle Down)을 합니다.


  • Pitch Up(후진) - 전면에 위치한 모터 ①, ②의 회전속도의 합 > 후면에 위치한 모터 ③, ④의 회전속도의 합

  • Pitch Down(전진) - 전면에 위치한 모터 ①, ②의 회전속도의 합 < 후면에 위치한 모터 ③, ④의 회전속도의 합


  • Roll Left - 우측에 위치한 모터 ①, ④의 회전속도의 합 > 좌측에 위치한 모터 ②, ③의 회전속도의 합

  • Roll Right - 우측에 위치한 모터 ①, ④의 회전속도의 합 < 좌측에 위치한 모터 ②, ③의 회전속도의 합


전체 프로펠러들의 중력방향 추력의 합이 드론의 무게와 동일 할 경우, 드론은 좌측 혹은 우측으로 수평비행을 하게 됩니다.



모터 ①, ②, ③, ④의 회전속도를 각각 라 하고 모터들에 장착된 프로펠러들이 발생시키는 전체 추력을 라 할 때, 각 모터들의 회전속도와 오일러 각도의 변화량  및 추력의 변화량 과의 관계는 다음 수식으로 표현할 수 있습니다.



위 식을 행렬식으로 나타내면 다음과 같습니다.



그러므로 각 모터의 회전속도 관점에서 다음과 같이 나타낼 수 있다.



위 식을 시간 에서 오일러 각도 및 추력의 변화량을 시간 증분을 이용해 표시하면 다음과 같습니다.



위 식에서 는 시간 에서 Tx(송신기)로부터 수신한 비행명령어이고, 는 시간 에서 각종 센서들을 이용하여 추정한 드론의 상태추정치이며, 는 드론의 비행제어기가 수행하는 함수로 볼 수 있습니다. 이 경우, 첨자 ''는 desired(Tx가 원하는)의 ''로 대체할 수 있고, 첨자 ''은 Estimated(센서융합기가 추정한)의 ''로 대체할 수 있습니다.



Tx에 조정키들을 움직여 오일러 각도 및 추력으로 구성된 비행명령어 를 드론에 송신하고, 드론의 Rx(수신기)는 이 비행명령어를 받아서 비행제어기(FC)에 전달합니다. 센서융합기는 자이로 센서, 가속도 센서 및 지자기 센서를 이용해 측정한 회전운동 상태측정치 와 기압 센서를 이용해 측정한 고도측정치 을 적절히 융합해 각 센서들의 오차가 최대한 제거된 상태추정치 를 계산해 비행제어기에 전달합니다. 비행제어기는 Rx로부터 받은 비행명령어를 센서융합기가 보내온 상태추정치와 비교해 그 차이 값을 이용해 각 모터들의 회전속도를 계산합니다. 여기서 첨자 'M'은 Measured(각종 센서들이 측정한)을 의미합니다.


드론은 Tx를 이용하지 않고 GPS 경로비행을 할 수도 있습니다. 한편으로, 센서융합기는 드론의 회전운동 상태측정치 와 GPS 수신기와 기압 센서를 이용해 측정한 병진운동 상태측정치 를 함께 융합하여 센서 오차들을 좀 더 줄일 수 있습니다. 여기서 는 위치벡터, 는 속도 벡터, 는 고도를 의미한다. 아래 그림에서 센서융합기는 드론의 회전운동 및 병진운동 상태측정치를 융합하여 자이로 센서와 가속도 센서의 오차가 최대한 제거된 상태추정치 를 비행제어기에 전달하고, 비행제어기는 Rx로부터 전달 받은 비행명령어 혹은 GPS 비행경로 좌표와 상태추정치를 비교해 그 차이 값을 이용하여 각 모터들의 회전속도를 계산합니다. 여기서 'lon'은 longitude(경도), 'lat'는 latitude(위도)의 약자입니다.




Posted by Nature & Life
Radio Control/TX & RX2017. 3. 4. 01:09


모드 1과 모드 2의 비교입니다. 조종기(TX)는 스틱 조작 방식에 따라 모드 1과 모드 2가 있으며, 모드 1의 경우에는 과거 많이 쓰이던 방식이고 현재 드론의 경우에는 보다 직관적인 모드 2 방식이 대부분 사용됩니다.



※ 멀티콥터를 포함한 헬기의 기준이며 괄호안은 고정익(비행기)의 용어입니다.




'Radio Control > TX & RX' 카테고리의 다른 글

무선 송수신기의 통신 방식  (0) 2017.03.09
Telemetry Radio란?  (0) 2017.03.07
Posted by Nature & Life