각종 센서들이 측정한 상태측정치들은 각 센서들 고유의 오차 및 잡음이 포함되기 때문에 비행제어기에서 바로 사용할 수 없습니다. 센서융합기는 자이로 센서, 가속도 센서 및 지자기 센서가 측정한 드론의 회전운동 상태측정치와 GPS 수신기 및 기압 센서가 측정한 드론의 병진운동 상태측정치들을 적절히 융합하여 각종 오차 및 잡음이 최소화 된 상태추정치를 계산합니다.


자이로 센서(Gyroscope)

관성측정장치(IMU) 내부에 있는 3축 자이로 센서를 이용해 드론 기체좌표 x, y, z 세 축이 지구관성좌표에 대하여 회전하는 각속도를 측정한 후 고정좌표로 변환된 값(Wx.gyro, Wx.gyro, Wx.gyro)을 계산합니다. 자이로 센서 측정치는 선형 미분방정식을 이용해 오일러 각도 (Φgyro, ϴgyro, ψgyro)로 변환될 수 있다. 자이로 센서 측정치는 저주파수 대역에서 바이어스(bias) 오차를 포함하기 때문에(즉, 드론이 정지해 있을 때에도 자이로 센서의 측정치가 '0'이 되지 않음) x, y, z 세 축에 대한 자이로 센서의 바이어스 오차가 제거되어야 합니다.


가속도 센서(Accelerometer)

자이로 센서의 스코프의 오차를 제거하기 위해 가속도 센서가 이용됩니다. 관성측정장치(IMU) 내부에 있는 가속도 센서를 이용해 드론 기체좌표 x, y, z 세 축의 지구관성좌표에 대한 가속도를 측정한 후 고정좌표로 변환된 값 (fx,acc, fy,acc, fz,acc)을 계산합니다. 가속도센서 측정치 역시 오일러 각도의 '롤(Φacc)'과 '피치(ϴacc)'로 변환될 수 있으며, 이 값들은 자이로 센서의 측정치를 이용해 계산한 '롤(Φgyro)'과 '피치(ϴgyro)'에 포함된 바이어스 오차를 제거하는데 이용됩니다. 하지만, 가속도 센서는 '요(yaw)'를 측정할 수 없기 때문에 자이로 센서를 이용해 측정한 '요(ψgyro)'에 포함된 바이어스 오차를 제거할 수 없습니다.


지자기 센서(Magetometer or Compass)

지자기 센서를 이용해 드론 기체좌표 x, y, z 세 축의 자북점에 대한 방향을 측정합니다. 이 값을 이용해 기체좌표의 NED 좌표에 대한 '요' 값을 계산할 수 있으며, 센서융합기는 지자기 센서로 측정한 '요(ψmag)'를 이용해 자이로 센서 측정치 '요(ψgyro)'에 포함된 바이어스 오차를 제거합니다. 고정날개 드론의 경우 몸체 전면에 피토관(Pitot Tube)을 부착해 좀 더 정확한 '요' 값을 측정할 수 있으나, 드론의 경우 몸체가 회전하면서 날아가기 때문에 피토관을 이용하기가 어렵다는 것입니다.


GPS 수신기 

GPS 수신기는 GPS 위성들로부터 수신한 신호를 이용해 NED 좌표 상에서 드론의 병진운동상태, 즉 위도(Pn.GPS), 경도(Pe.GPS), 고도(hMSL.GPS), 위도상의 속도(Vn.GPS), 경도상의 속도(Ve.GPS) 및 고도상의 속도(Vd.GPS)를 계산합니다. 여기서 첨자 MSL은 해수면(MSL: Mean Sea Level)을 의미합니다.


기압 센서(Barometer)

GPS 수신기를 통해 수신한 위치 좌표에는 항상 5~10m의 오차가 존재합니다. 민수용 GPS 수신기는 L1 주파수밴드(1.5GHz)의 C/A(Coarse-Acquisition) 코드 혹은 L2 주파수밴드(1.2GHz)의 C/A 코드 둘 중의 하나만을 수신할 수 있습니다. 하지만 군사용 GPS 수신기는 L1 C/A와 L2 C/A를 동시에 수신할 수 있어 Diversity로 인한 이득을 얻을 수 있으며, 추가로 암호화 신호(Encrypted Signal) P(Y)를 수신할 수 있어 GPS 신호가 지구의 이온층을 통과할 때 교란되는 것을 보정할 수 있습니다. 이를 이온층 보정(Ionospheric Correction라 일컫습니다. 5~10m의 GPS 고도 오차는 주로 저공비행을 하는 드론의 지상시설물들과의 충돌 위험을 야기시킵니다. 따라서 별도의 기압 센서를 이용하여 고도(hALP.baro)를 측정하기도 한다는 것입니다. 여기서, 첨자 ALP는 기압(Air-Level Pressor)를 의미하며 드론의 이륙시 기압과 현재 비행고도에서의 기압을 비교해 이륙 지점으로부터의 현재 고도를 계산합니다.


센서융합기는 회전운동상태(ΦE, ϴE, ψE)만을 추정하거나, 회전운동 상태와 병진운동상태(Plon.E, Plat.E, hE)를 동시에 추정할 수 있습니다. 회전운동상태 만을 추정하는 센서융합기를 AHRS(Attitude & Heading Reference System)라고 부르고, 회전운동상태와 병진운동상태를 동시에 추정하는 센서융합기를 관성항법기(INS; Inertial Navigation System)라고 부릅니다.


AHRS를 이용한 센서융합기

AHRS 센서융합기는 보상필터(Complimentary Filter; 상보필터)를 이용하거나 확장 칼만 필터(EKF: Extended Kalman Filter)를 이용합니다. AHRS 보상필터는 고주파 대역 특성이 좋은 자이로 센서의 상태측정치(Φgyro, ϴgyro)를 고주파 대역 필터로 추출하고, 저주파 대역 특성이 좋은 가속도 센서의 상태측정치(Φacc, ϴacc)를 저주파 대역 필터로 추출한 후 합쳐서 자이로 센서의 바이어스 오차가 최소화된 상태추정치(ΦE, ϴE)를 비행제어기(FC)로 전달해 줍니다.


AHRS 확장칼만필더(AHRS-EKF)는 드론의 비행역학(Flight Dynamics)을 이용해 각종 오차를 제거하는 방법입니다. 자이로 센서를 이용한 측정치(Φgyro, ϴgyro, ψgyro), 가속도 센서를 이용한 측정치(Φacc, ϴacc), 지자기 센서를 이용한 측정치(ψmag) 및 GPS 수신기를 이용한 측정치(Vn.GPS, Ve.GPS, Vd.GPS)를 이용해 실시간으로 드론의 회전운동역학(Rotational Dynamics)을 확장 칼만 필터를 이용해 모델링하면서 자이로 센서 및 가속도 센서의 바이어스 오차가 최소화된 상태추정치(ΦE, ϴE, ψE)를 계산해 비행제어기로 전달해 줍니다. GPS 수신기로 측정한 병진운동상태 측정치(Pn.GPS, Pe.GPS) 및 기압 센서로 측정한 고도측정치(hALP.baro)는 융합과정을 거치지 않고 그대로 비행제어기로 전달된다.




Posted by Nature & Life


과거 모형 헬기와 같은 전통적 RC는 메인 로터가 양력을 얻어 부양하고 메인 로터가 회전할 때 회전각에 따른 로터의 피치를 조절하여 헬기가 원하는 방향으로 나아가는데, 메인 로터로 인한 헬기 동체의 반동 토크를 상쇄시킬 목적으로 테일 로터도 함께 회전시키게 됩니다(안정성을 강조한 동축반전 헬기는 제외). 이때 헬기 동체가 정숙하게 방향성을 유지하고 호버링하거나 이동하기 위해서는 자이로(gyroscope) 센서의 도움을 받아 실시간 보상하였는데, 이것이 사실 비행 자동화의 전부였으며 나머지는 오직 조종자의 오랜 비행 경험을 토대로 한 자동 반사적인 키감에 의존하여 매우 역동적인 스포츠를 즐기게 되었습니다.


반면에 드론은 쿼드콥터를 예를 들어, 4개의 프로펠러로 양력을 얻고 원하는 방향으로 나아가기 위해서는 개별 로터의 회전속도를 정교히 제어해야 하는데 이는 컴퓨터의 도움없이는 거의 불가능하다는 것입니다. 이러한 이유로 드론의 비행제어기(FC; Flight Controller)는 사람의 심장과도 유사하여 수신모듈로 부터 수신된 명령 신호를 처리하여 각 암(ARM)의 모터를 제어하고, 게다가 가속도계/자이로 센서를 포함하는 관성측정장치(IMU), 바로미터, 컴파스/지자계 등의 센서 데이터를 기반으로 안정적인 비행이 가능하도록 한다는 것입니다.


최근에는 GPS 센서를 탑재하여 GPS 데이터에 기반하여 사전에 입력된 경유지(waypoint)를 순차적으로 운항하거나 RTL(Return to Launch)라는 자동 회귀 기능 등의 탑재로 조종자의 명령이나 각종 기체 이상 등을 감지하여 이륙 장소로 스스로 귀환시키거나, 영상 및 소리 센서들을 활용한 충돌회피 등등 다양한 기능들이 추가되면서 FC는 날로 매우 빠른 연산을 수행하는 MCU가 필요한 추세라는 것입니다.


이를 증명하듯 수 년전에는 오픈 소스에 기반한 APM(AutoPilot Mega) 보드나 multiwii 보드는 8bit 16MHz의 ATmega328이나 ATmega2560의 MCU가 사용되었는데, 그 후로 AruPilot의 PixHawk(3DR)은 훨씬 강력한 32bit 168MHz의 STMicro사의 ARM Cortex M4를 사용하게 되었습니다. 현재의 오픈 소스의 드론 플랫폼으로 가장 인기있는 PX4는 64bit quad-core 2.26GHz의 퀄컴사 SOC(System on Chip) 기반 스냅드래곤 SOC(System on Chip)을 채용하고 있는 실정입니다.



사실 드론이 안정적인 비행으로 대중화를 선언한 그 이면에는 고성능의 MCU 채용만큼이나 FC에서 중요한 것은 센서 기술의 진화에 있다고 해도 지나치지 않다라는 것입니다. 각종 센서들로부터 드론은 비행 속도/각도, 좌표, 위치 데이타 등을 실시간으로 MCU에 제공하여 상당히 안정적인 비행을 가능하게 하지만, 최근에는 저고도에서의 정확한 고도 유지와 포지션홀드 기능을 위해 초음파센서, 옵티컬플루우(Optical Flow) 센서 등이 사용되고 있으며, 또한 충돌회피를 위해 카메라 센서 기반한 SLAM(SImultaneous Localization and Mapping)등의 알고리즘들이 활발히 연구되고 있다는 것입니다.



Posted by Nature & Life
Drone News/News2016. 1. 10. 18:08


근래에 드론(Drone)이 레저 스포츠로 각광을 받으며 국내에서도 동호회가 봇물처럼 생겨나고 있습니다. 이런 이유로 야외나 주변 공원에서 드론을 날리를 모습을 심심치 않게 보게 됩니다. 특별히 드론으로 레이싱 경기를 하지 않는 이상 일반인도 구매에서부터 쉽게 비행할 수 있기 때문입니다.


예를 들어, 헬기를 비행하는 기존의 RC에서는 기체가 순간적으로 기울어지면 반대방향으로 싸이클릭을 주어 기체를 인위적으로 안정시키는데, 이는 거의 무의식적으로 이루어져야 추락을 면할 수 있으므로 비행을 즐기기 위해서는 마치 자전거를 배우는 것처럼(사실 이보다는 어렵습니다!)상당한 기간의 비행기술 습득 및 반복 연습이 요구되었습니다.


하지만 요즈음 드론은 기체의 수평을 잡아주는 장치나 각종 센서의 발달로 기체가 기울어지면 스스로 안정화시키고, 고도를 스스로 유지한다던가 아니면 비행지점을 설정해 놓으면 스스로 비행하는 자율 비행 기술이 발달함에 따라, 조종자는 이동하고자 하는 방향으로 조종간을 주기만 하면 되기 때문에 일반인도 쉽게 비행 가능하며, 전용 조종기 대신 스마트폰으로도 간단히 조종 가능하다는 것입니다.


뿐만아니라 드론의 대중화는 드론에 필요한 장치를 개발하고 판매하는 업체가 다양화되면서 장치들의 일정한 표준화가 이루어져, 완전히 조립된 기체에 싫증이 난 매니아층이나 성능 개선, 비용을 줄이기 위해서 드론 자작을 시도하는 사람들도 증가하는 추세라는 것입니다. 이러한 DIY(Do It Yourself)를 지향하는 사람들은 비행만큼이나 드론의 조립에도 특별한 경험과 즐거움을 갖게 된다는 것입니다.


하지만 드론을 자작하기 위해서는 드론에 대해서 어느 정도 지식이 요구되며 이로 인해서 어린이용 장난감과도 구분이 된다는 것입니다. 드론 부품은 국내외 온라인 사이트나 오프라인 매장에서 쉽게 구할 수 있는데, 어떤 분은 3D 프린터를 이용해서 기체의 프레임을 직접 자작하기도 합니다. 기체의 프레임이란 기체에서 비행제어기나 추진용 모터, 수신기, 각종 센서들을 제외한 이를 탑재하는 기구적인 기체를 의미합니다.


드론은 날개 수에 따라 쿼드콥터나 옥토콥터 등으로 구분되는데, 날개를 축 혹은 암(Arm)이라고 합니다. 날개가 4개이면 쿼드콥터이고 8개이면 옥토콥터가 되며 날개 수가 많을 수록 기체는 안정화되고 양력이 커서 무거운 짐을 더 많이 매달고 비행할 수 있습니다. 하지만 날개 끝에 프로펠러(줄여서 프롭(prop.))를 회전시키는 모터도 같이 증가하므로 밧데리 소모량이 많고 이는 체공시간의 감소를 가져와 고용량 밧데리의 사용으로 비용이 증가한다는 것입니다. 프롭을 회전하는 것이라는 하여 '로터(rotor)'라고도 부릅니다.


트라이콥터(Tricopter)


그러므로 초보자는 4개의 날개를 가진 쿼드콥터를 선택하는 것이 바람직하며, 드론을 전후좌우로 움직이기는 방향타를 주고 스로틀을 조절할 수 있는 저렴한 4채널의 조종기면 충분하다는 것입니다. 드론에 카메라를 장착하여 기구적으로 비행 중에 움직이길 원한다면 데이터를 주고받을 추가적인 채널이 필요하게 되는데, 채널의 증가는 곧 조종기의 비용으로 이어진다는 것입니다. 여기서 스로틀(throttle)이란 드론이 지상에서 양력을 얻어 이륙하고 착륙할 수 있도록 수직방향의 '엑셀레이터'와 같은 것입니다.


통상 초보자가 입문단계에서 기체의 비용은 20만원 전후도 있으며 4채널 조종기를 포함하여 40~60만원 정도로 구입할 수 있습니다. 기체가 커지거나 장착한 카메라 등의 조종이 필요하다면 비용은 증가하게 됩니다. 보통 초보에게는 250급 쿼드콥터가 추천되는데 250급이란 양 암(축)의 길이로 기체의 수평방향 폭과 같으며 이 길이가 250mm라는 것입니다. 완제품 드론의 구입시 조종기를 제외한 가격을 예시하는 경우도 많아 반드시 알아보고 구입해야 합니다.


드론은 구성은 기체 프레임(frame)과 모터(motor), 변속기(Electronic Speed Controller; ESC), 수신기(Receiver; Rx), 비행제어기(Flight Controller; FC), 밧데리(battery) 등으로 구성되며 드론을 조종할 수 있는 조종기(Transceiver; Tx)가 필요하게 됩니다. 여기서 카메라를 장착한다만 카메라 등의 별도의 장치가 필요하게 되고, 위성 신호를 수신하는 경우에 비행제어기에 포함되지 않고 외장 모듈로서 구입하여 장착하는 경우가 많습니다. 



기체 프레임(frame)은 근래에 유리 섬유(fiberglass sheet; G10)나 탄소 섬유(carbon fiber)의 재질이 대부분인데 특히 후자는 가볍고 잦은 추락에도 강인함이 있기 때문입니다. 모터는 프롭을 회전시켜 추력을 발생시키는 중요한 동력원으로 브러시(brush)가 있는 DC 모터보다는 브러시가 없는 BLDC(Brushless DC) 모터를 사용하게 됩니다. 이는 브러시로 인하여 기구적인 내구성 문제도 있지만 고효율이라는 장점으로 고효율은 밧데리 수명과도 직결되기 때문입니다.


BLDC 모터는 우수한 특성을 갖지만 이를 제어하기 위해서는 까다로와 마이크로컨트롤러를 사용하여 제어기를 구성하게 되며, 최근에서 BLDC의 부류이지만 유도 전동기와 개념이 동일한 PMSM 타입의 모터가 사용되는 추세입니다. 이는 BLDC 모터보다 정밀한 제어와 효율이 뛰어나지만 보다 고성능의 마이크로컨트롤러가 요구된다는 단점이 있습니다. 이러한 제어기는 전자적으로 속도를 제어한다고 하여 '전자 변속기'라 부르고 통상 ESC라 합니다. 따라서 쿼드콥터이면 각각 4개의 모터와 프롭 그리고 ESC가 필요하게 됩니다.


수신기와 송신기는 동일한 주파수를 사용하여 데이터를 주고 받는 장치로 기존의 주파수 변조 방식(FM)에서 크게 DSM(Digital Spectrum Modulation)과 FASST(Futaba Advanced Spread Spectrum Technology) 등의 디지털 방식으로 진화하였고, 수 GHz의 주파수 사용으로 대역폭이 늘어나 이제는 송신기에서 일방적으로 데이터를 보내기보다는 기체의 센서로부터 각종 데이터 받아 조종자에게 보여주는 양방향 방식으로 변천하였고, 높은 주파수의 사용은 안테나 길이의 감소를 가져와 송신기의 거추장스러운 긴 안테나의 모습은 이제 사라지게 되었습니다.



또한 밧데리는 근래에 리튬폴리머(Li-Po) 타입을 사용하는데, 최소 1개의 셀이 3.7V로 250급 쿼드콥터에서 3개정도의 셀을 사용하여 11.1V를 만들게 됩니다. 이 3개의 셀을 '3S'라 쉽게 표현하고 3개의 셀을 직렬 연결하여 사용함을 의미합니다. 스마트폰에도 사용하는 리튬폴리머 전지의 특징은 충전용량이 높고 4개의 모터를 강력하게 회전시킬 수 있는 우수한 방전능력을 가지지만 사용시에나 충전시에 조건을 만족시키지 못하면 폭발하는 성질이 있어 전용 충전기가 반드시 필요하게 됩니다. 이는 대부분 별도의 비용이고 대부분의 쿼드콥터에서 비용이 합리적인 선에서 체공시간은 20분 정도로 20분 후면 밧데리가 완전 방전되게 됩니다.


마지막으로 비행제어기는 드론의 두뇌역활을 하는 마이크로컨트롤러가 탑재된 중앙처리장치로 송신기에서 보낸 지령을 수신기로 받아 이를 해석하고, 축의 모터에 연결된 변속기를 제어하는가 하면 고도센서와 같은 각종 센서들의 정보를 이용하여 기체의 안정도를 꾀하고, 필요하다면 조종자에게 알리며 센서를 이용하여 고도를 유지하거나 인공위성 신호를 분석하여 자동비행 모드에서 정해진 절차에 따라 기체의 비행을 스스로 시행하기도 합니다.



드론의 자작은 다양한 전기전자적인 지식을 요구합니다. 어디까지 개인의 취향에 맞게 개선하느냐에 따라 단순한 납땜을 비롯해 메이커만을 변경하는 문제에서 비행제어기나 변속기 내의 펌웨어까지도 수정할 수 있습니다. 후자의 경우 상당한 지식과 노하우가 요구되며 전문가이더라도 상당한 시행착오가 있을 수도 습니다. 드론 비행 자체는 결코 장난감이 아니며 남에게 상해 이상의 피해를 가할 수 있슴을 직시하고 안전에 만전을 기하여야 할 것입니다.


최근에 드론으로 인한 사고와 주변 안전이 우려되어 관련법의 마련이나 개정이 대두되고 있습니다. 또한 서울지역의 약 80%가 드론 비행 제한 구역이기에 드론을 날릴 때에서 각별히 유의해야 할 것입니다. 드론을 직접 자작하여 비행하면 기쁨은 분명 배가 될 수 있습니다. 하지만 때로는 인고의 노력과 유연한 인내심이 요구될 수도 있습니다. 자작에 앞서서 동호회 등에서 주변 지식에 대한 두루 섭력이 반드시 요구될 것입니다.



Posted by Nature & Life
Drone News/News2016. 1. 8. 14:40


최근 종합편성채널의 '나는 자연인이다', '삼시세끼' 등 많은 프로그램들은 드론(Drone)을 이용한 지상에서부터 고공까지 영상을 촬영하여 촬영지에 대한 아크로배틱한 진행과 입체감으로 시청자의 이해를 돕고 있는 실정입니다. 뿐만아니라 국내에서도 한서대와 대경대는 각각 무인항공기학과 드론과를 개설하여 바야흐로 드론은 일상 뿐만 아니라 차세대 신성장동력으로 기존의 2차원적인 삶으로부터 3차원적인 삶의로의 도약을 꿈꾸고 있다는 것입니다.


사실 드론은 무선 전파로 조종하는 소형 무인 항공기(소위 RC; Radio Control)로 그 역사는 결코 짧지 않았고 이전에는 엔진기가 대부분으로 비행기나 헬기 형태로 가격이 비쌌던 나머지 돈에 구애받지 않았던 일부 특별한 매니아들의 전유물로 군림해왔던 것입니다. 그러나 최근에는 밧데리와 CPU 등의 첨단 기술의 발달과 GPS와 같은 위성합법기술의 대중화로 초보자도 손쉽게 비행할 수 있는 드론의 출현으로 무인항공기 시장은 빠르게 가속화 되어가고 있다는 것입니다.



기존의 RC가 인간이 하늘을 날고자 했던 역동적인 비행을 추구하였다면 최근의 드론은 각종 기술의 발달로 조용하고 안정한 정숙비행과 정지비행을 쉽게 할 수 있으며, 체공시간도 길어져 군수용은 물론이고 이른바 사람이 접근하기 어려운 지역에 드론을 보내어 사진이나 비디오 영상 자료를 수집하여 보도하는 드론 저널리즘과, 최근 미국에서 드론을 이용한 음식 배달이나 택배 사업 그리고 중국에서 사람이 탑승 가능한 중단거리 교통 수단, 국내에서 재난지역에 급파하여 임시 중계기 등으로 사업화를 꾀고 있는 실정이라는 것입니다.


게다가 요즈음 인텔이나 구글 등의 IT 대기업들도 드론 산업을 차세대 신성장동력이라고 하여 비행장치의 CPU와 비행에 요구되는 기술 개발에 박차를 가하고 있는 실정입니다. 또한 국내에서는 굴지의 삼성전자도 뒤질세라 스마트폰에 이어 드론 산업을 론칭하기 위한 TFT 팀을 꾸리고 있다고 보도됩니다. 앞으로 드론이 얼마나 대중화되고 차세대 먹거리가 되느냐는 당장 피부에 와닿지가 않지만, 글로벌 IT 기업들이 앞다투어 현재 스마트폰 시장을 대체할 만한 산업으로 간주하고 추진한다는 것은 가히 드론 산업의 지극히 전망이 밝다라는 것을 간접적으로 나타내는 것이라 하겠습니다.


이렇게 드론이 대중화되면서 직장 초년이나 중장년층이 드론을 취미 생활에 활용하고 있는 이들이 많는데, 이를 근래에는 RC매니아에서 키덜트(kidult)족이라 부르기도 하며, 그룹 신화 멤버 김동완씨가 예능 프로그램인 '나 혼자 산다'에 드론을 활용한 취미 생활을 공개하여 많은 일반인들에게 반향을 불러일으키기도 하였습니다.



취미 생활에 활용되는 보급형 드론의 가격은 수 만원대 드론의 아동용 장난감을 제외하면, 통상 수십만 원대부터 수백만 원까지 천차만별이며, 배터리를 완충시 약 30분 정도 비행이 가능하고 조종기와 드론간 통신거리는 최대 800m에 이른다는 것입니다. 어떤 드론은 스마트폰으로도 조종할 수 있으며 어떤 드론은 기체에 카메라를 장착하여 조종자에게 영상을 실시간으로 보내주기도 한다는 것입니다.


가장 최근에 KT경제경영연구소에 따르면 2014년 3월부터 2015년 1월까지 미국 구매대행 사이트 eBay에서 판매된 드론은 12만7,000만여 대에 달하였고, 2014년 3월 온라인 쇼핑몰 쿠팡과 G마켓에서도 드론은 높은 판매실적을 나타냈으며, 이는 전체 무선조종 제품의 매출을 같은 기간 동안에 74%나 급증하였으며 전체 구매자 중 55%가 30~40대 남성이라는 것입니다.


이와 같은 드론에 대한 관심은 또한 국내 드론 관련 동호회가 봇물처럼 쏟아져 나온게한 계기가 되었습니다. 2014년부터 현재 50여개의 드론 동호회가 활동 중이며 함께 비행하고 필요한 정보나 주의사항을 교환하며 취미를 공유한다는 것입니다. 게다가 드론으로 레이싱을 즐기는 협회도 생기게 되었는데, 한국드론레이싱협회의 경우 국제드론레이싱협회의 한국지부로 2014년 9월 발족되어 현재 국내 드론 레이싱 인구는 약 2,000명에 달한다고 알려지며 협회 소속 레이싱팀만 35개이고, 프로선수도 양성되고 있다는 것입니다.





Posted by Nature & Life
Radio Control/ESC2014. 6. 19. 11:52



다음은 Simon Kirby(http://0x.ca/)의 오픈 RapidESC 펌웨어 개발 사이트입니다.


https://github.com/sim-/tgy


This tree contains Atmel AVR assembly code for ATmega-based 3-phase sensor-less motor electronic speed control (ESC) boards, originally for Turnigy and similar models. This work is based on Bernhard Konze's "tp-18a" software, which was a port from his earlier personal work to the TowerPro 18A and original (not current!) Turnigy Plush boards. Please see tgy.asm for Bernhard's license.

이 목록은 ATmega 기반의 3상 브러쉬리스 모터 전자 속도 제어기(ESC) 보드를 위한 Atmel AVR 어셈블리 코드를 포함합니다. 원래는 Turnigy와 유사한 모델을 위한 것이었습니다. 이 프로젝트는 Bernhard Konze의 'tp-18a' 소프트웨어에 기반을 둡니다. 이것은 TowerPro 18A과 원래의 Turnigy Plush 보드의 그의 앞선 개인적인 프로젝트를 포트(port)한 것이었습니다. Bernhard의 라이센스에 대해서 tgy.asm을 보시기 바랍니다.


Patches and comments are always welcome! Let me know how it goes!

패치와 주석은 항상 환영합니다. 알려주세요!


Features

    • 16MHz operation on most boards

    • 16-bit output PWM with full clock rate resolution (~18kHz PWM with a POWER_RANGE of 800 steps)

    • 24-bit timing and PWM pulse tracking at full clock rate resolution

    • ICP-based pulse time recording (on supported hardware) for zero PWM input control jitter

    • Immediate PWM input to PWM output for best possible multicopter response (but NOT where soft start or really any significant current limiting is needed!)

    • Accepts any PWM update rate (minimum ~5microseconds PWM low time)

    • Optimized interrupt code (very low minimum PWM and reduced full throttle bump)

    • Configurable board pin assignments by include file

    • Smooth starting in most cases

    • Forward and reverse commutation supported, including RC-car style reverse-neutral-forward PWM ranges, with optional braking


Hardware

See http://wiki.openpilot.org/display/Doc/RapidESC+Database and/or https://docs.google.com/spreadsheet/ccc?key=0AhR02IDNb7_MdEhfVjk3MkRHVzhKdjU1YzdBQkZZRlE for a more complete list. Some board pictures here: http://0x.ca/sim/esc/

http://wiki.openpilot.org/display/Doc/RapidESC+Database 그리고/또는 좀더 완전한 목록을 위해서 https://docs.google.com/spreadsheet/ccc?key=0AhR02IDNb7_MdEhfVjk3MkRHVzhKdjU1YzdBQkZZRlE을 보시기 바랍니다. 일부 보드의 그림은 여기에 있습니다: http://0x.ca/sim/esc/


Tested boards by target:

    • afro2:

        • AfroESC 2 (prototype)

    • afro_hv:

        • AfroESC HV (high voltage, with all-N FETs and drivers)

    • afro_nfet:

        • AfroESC with all-N FETs (revision 3)

    • birdie70a:

        • Hobby King Birdie 70A (BIRD-60A)

        • Hobby King Red Brick 200A (RB200A, black board)

    • bs:

        • Hobby King 6A (HK_261000001)

        • Hobby King 10A (HK_261000002)

        • Hobby King 40A (F-40A)

        • Hobby King 60A (F-60A)

    • bs_nfet:

        • Hobby King 20A (F-20A)

        • Hobby King 30A (F-30A)

    • bs40a:

        • Hobby King BlueSeries 40A (and some Mystery 40A boards)

    • dlu40a:

        • Pulso Advance Plus DLU40A with opto-isolated inverted PWM input

        • Hobby King Multistar 45A

    • dlux:

        • Turnigy dlux 20A SBEC

    • hk200a:

        • Hobby King SS Series 190-200A (HK-SS200ALV)

        • RCTimer 50A TQFP version

    • kda:

        • Keda 12A rev B with inverted PWM input (30A should also work)

        • Dynam 18A, 25A with Blue Heat Shrink

        • Hobby King Multistar series (30A and under)

    • maytech30a:

        • Maytech 30A and 20A, complementary PWM

    • maytech40a:

        • Maytech 40A, complementary PWM

    • maytech60a:

        • Maytech 60A, complementary PWM

    • mkblctrl1:

        • MikroKopter BL-Ctrl v1.x (flashable by ISP only)

    • rb50a.hex

        • Hobby King Red Brick 50A (RB50-ESC)

    • rb70a.hex

        • Hobby King Red Brick 70A (RB70A)

        • Hobby King Red Brick 200A (RB200A-BTO, black board)

    • rct50a:

        • RCTimer 50A older MLF version

    • tbs:

        • Team BlackSheep TBS 30A ESC (ICP input version)

    • tp:

        • Original TowerPro 17A, 25A

        • Hobby King SS models without "-HW" in part number

    • tp_8khz:

        • tp at 8kHz PWM (workaround for DYS/HK-SS clones with PWM noise problems)

    • tp_i2c:

        • tp modified for I2C input (old ADC4 routed to ADC1)

    • tp_nfet:

        • Newer TowerPro 25A with inverted low side (BL8003 drivers)

    • tp70a:

        • TowerPro 70A with BL8003 FET drivers (inverted low side)

        • tgy (these boards typically have no external resonator):

        • Original TowerPro 18A

        • Original Turnigy Basic and Turnigy Plush 10A, 18A, and 25A (Hobbywing OEM)

        • RCTimer 10A, 18A, 20A, 30A, 40A (18A, 20A, 30A are same board with more or less FETs)

        • Hobby King SS models with "-HW" in part number

    • tgy6a:

        • Original Turnigy Plush 6A


Turnigy Plush 18A


Notes

    • If it breaks, you get to keep both pieces! (만일 부러지면, 두 조각을 그대로 유지하면 됩니다!)

    • Use at your own risk, and always test first without propellers! (손상을 감안해야 하며 항상 프롭 없이 테스트를 먼저 해야 합니다!)

    • New Turnigy Plush, Basic, Sentry and Pentium boards (Hobbywing OEM) have all switched to SiLabs C8051F334, d'oh! (새로운 Turnigy Plush, Basic, Sentry 그리고 Pentium 보드들(Hobbywing OEM)은 모두 SiLabs사의 C8051F334으로 전환한 상태입니다.)

    • If your ESC has 6 pads and an AVR, it's probably compatible; the pads are MOSI, MISO, SCLK, GND, VCC, and RESET. If it has 4 pads, it is probably a newer SiLabs-based one, for which this code will not work. (Except HK_261000001 which has 4 pads but has an AVR.) (여러분의 ESC가 6개의 패드와 AVR을 사용한다면 아마도 호환가능할 것입니다; 패드는 MOSI, MISO, SCLK, GND, VCC, 그리고 RESET입니다. 만일 4개의 패드를 가지고 있다면, 아마도 이것은 이 코드에서 동작하지 않는 새로운 SiLabs 칩을 사용하는 보드일 것입니다.(HK_261000001는 예외로 4개의 패드를 갖지만 AVR을 사용합니다))

    • I build and maintain this in Linux with AVRA (1.3.0 or newer). Patches welcome for AVR Studio APS files, etc. (저는 AVRA (1.3.0 or newer)로 Linux 상에서 컴파일하였습니다. AVR Studio *.aps 파일의 패치 또한 환영합니다.)

    • The TowerPro/Turnigy Plush type boards typically do not come with external oscillators, which means their frequency drifts a bit with temperature and between boards. Multicopters and RC-car/boat controllers (with a neutral deadband) would probably be better on a board with an external oscillator. The Mystery/BlueSeries boards typically have them, as well as most higher current boards. (TowerPro/Turnigy Plush 타입의 보드는 전형적으로 외장 오실레이터를 갖지 않는데 이것은 ESC의 주파수가 온도와 보드 사이에서 약간 변동될 수 있음을 의미합니다. (데드밴드를 가진) 멀티콥터와 RC자동차/보트 콘트롤러는 아마도 외장 오실레이터를 가진 보드에서 더 좋을 수 있습니다. Mystery/BlueSeries 보드는 전형적으로 외장 오실레이터를 가집니다. 게다가 가장 높은 전류를 갖는 보드입니다.)

    • This doesn't yet check temperature or battery voltage. This is not desired on multi-rotor platforms; however, people still want to use this on planes, cars, boats, etc., so I suppose I'll add it. (이것은 아직 온도와 밧데리 전압을 체크하지 않습니다. 이것은 멀터로터 플랫폼에서 요구되는 것이 아닙니다; 그러나 사람들이 비행기나 자동차, 보트 등에 이를 사용하기를 원한다면 저는 이 기능을 추가할 수 있습니다)






'Radio Control > ESC' 카테고리의 다른 글

PX4ESC의 스펙  (0) 2015.12.08
ESC32의 스펙  (0) 2015.12.04
RapidESC FAQ's  (0) 2014.06.11
RapidESC Flashing  (0) 2014.06.03
RapidESC란?  (0) 2014.05.26
Posted by Nature & Life
Embedded Programming/AVR 2014. 3. 11. 13:11

 

AVR(Atmel AVR)은 8bit RISC 단일칩(onechip) 마이크로컨트롤러(Microcontroller) 혹은 마이크로컴퓨터(Microcomputer, Micom)로 일반적으로 마이컴이라고 부릅니다. 1996년에 美 Atmel社가 하버드 아키텍처(Harvard architecture)로 수정하여 개발한 구조로 프로그램을 저장하기 위해 타사 마이컴처럼 ROM, EPROM 또는 EEPROM을 사용하지 않고 단일칩 플래시메모리(Flash memory)를 처음 사용하였다고 전해집니다.

 

AVR 마이컴은 중앙처리장치(CPU)와 소용량 플래시메모리가 하나의 IC에 집적되어 있으며 프로그램과 데이터 영역의 메모리가 분리된 형태로 특수 명령어로 프로그램을 데이터 영역으로 읽어들일 수 있습니다. 마이컴에 프로그램을 탑재하기 위해서는 ISP(in-system programming) 방식으로 Reset을 추가한 SPI 프로토콜로 업로드가 가능합니다.

 

http://www.atmel.com/

 

 

 

무엇보다도 AVR은 ISP 기능을 통해 매우 저렴하게 개발환경을 구축할 수 있다는 점과 한 cycle에 한 개의 명령(instruction)을 수행하는 파이프 라인 방식으로 연산 속도가 빠르며, 하버드 아키텍처의 특징으로 C언어에서 우수한 성능을 발휘하며 게다가 우수한 각종 컴파일러(Compiler)와 디버거 툴인 AVR Studio를 무료로 제공한다는 특징을 가집니다. 이밖에도 A/D 변환기, PWM, SPI 등의 고기능을 손쉽게 구현할 수 있다는 장점이 있습니다.

 

AVR은 위와 같은 특징으로 말미암아 대중화되었으며 근래에는 보다 상위개념의 ARM 프로세서가 출시되어 아이폰이나 최신기기에 탑재되지만, 저렴하여 가격대비 성능면에서 우수하여 여전히 중소 규모의 다양한 기기에 여전히 활용되고 있으며, 드론(Drone)이나 기타 RC에 사용되는 장치에는 다른 마이컴인 PIC 보다 처리 속도가 빠르고, 8051 계열보다 자원이 풍부한다는 장점으로 보다 널리 사용되고 있는 실정입니다.

 

 

 

다음은 AVR의 일반적인 특징을 요약하였습니다.

 

  • ISP(In System Programming) 기능이 있어 AVR을 장치에 부착한 상태에서 내부 메모리에 프로그램이 가능합니다.

  • RISC 구조로 동일 클럭(clock)으로 동작 시 PIC보다 4배 빠르고, 8051보다 10배 이상 빠릅니다. 예를 들어 1MHz에 1MIPS의 처리 능력이 있어 20MHz로 동작하는 경우 20MIPS의 처리 능력을 가집니다.

  • CPU 설계 단계에서 레지스터/메모리/명령어가 C 언어에 적합하도록 설계되어 C 언어를 사용하면 개발 기간을 단축하고 유지 보수가 편리하다는 것입니다.

  • 다양한 AVR 제품군이 있어 저가의 적합한 소자의 선정 및 사용이 가능하고 풍부한 저가의 개발 환경 및 응용 기술 자료가 많다는 것입니다.

  • SRAM, 통신포트, A/D 변환기, Watchdog, 타이머, PWM, I/O포트 등의 풍부한 내부 장치를 구비하여 외부에 별도로 주변장치를 부착하지 않아도 된다는 것입니다.

 

 

'Embedded Programming > AVR ' 카테고리의 다른 글

다양한 AVR Package 비교  (0) 2014.06.14
변수 vs. 메모리  (0) 2014.04.20
AVR의 메모리 구조  (3) 2014.04.20
부트로더란?  (0) 2012.12.10
Posted by Nature & Life
Radio Control/Concept2013. 5. 22. 19:46

 

최근 KBS의 '세계는 지금' 프로그램에서 드론(Drone)을 보도한 바 있습니다.

 

드론(Drone)이란 사람이 직접 타지 않으며 임무를 수행하는 무인비행기(UAV)로서 원격지에서 무인비행기에 설치된 카메라 영상을 통하여 조종을 하는데 최근에는 GPS 시스템과 연계하여 지상에서 컴퓨터로도 완벽한 조종이 가능하게 되었습니다.

 

기존의 단순 원격조종(RC)이라는 개념을 탈피한 드론은 관련 첨단 기술이 군사부분에서 민간부문으로 이관되었고 고가의 정밀 제어장치 등이 싼가격으로 보급되면서 급속도로 발전을 거듭하고 있습니다. 각종 첨단기술이 집약된 드론을 즐기는 매니아들은 최근 스마트폰과도 같아 누구나 쉽게 드론을 배우고 즐길 수 있다고 알려집니다.

 

최근에 3D 로보틱스사에서는 약 500달러 정도이면 누구가 구입하여 15분 내에 즐길 수 있는 수준이 되었다고 합니다.

 

 

최근 미국 오바마 대통령은 2015년경에 드론의 상업적 이용에 대한 법안에 서명하면서 미 관련전문가들은 5년내에 7,500개의 상업적 드론이 운용될 것이고 약 7만개의 새로운 일자리가 창출되어 새로운 미래산업으로 자리매김할 것으로 기대합니다.

 

하지만 가장 도입을 서두르는 경찰치안 유지 및 민간 분야의 각종 사업에 무분별한 사용은 사생활 침해와 시민의 안전을 위협할 것이라는 우려의 목소리도 커지고 있습니다. 간단한 장치의 추가로 이 드론은 하늘의 감시자로서 군림하며 정해진 곳으로 이동하여 지상의 사람 얼굴을 인식하고 사진을 촬영하며 물건도 전해줄 수 있기 때문입니다.

 

초기에 대테러 목적이나 군사적으로 사용된 만큼 첨단 드론이 각종 시위현장에서 사용된다면 개인 사생활은 물론이고 차후에 인권 침해의 논란도 잠식시킬 수 없을 것입니다.

 

Posted by Nature & Life