'DRV8302'에 해당되는 글 3건

  1. 2018.12.03 BitWizard ESC의 소개
  2. 2018.01.28 DRV8302 Three Phase Gate Driver 데이터시트(한글)
  3. 2017.11.03 VESC – Open Source ESC(1)
Radio Control/ESC2018. 12. 3. 19:47


다음의 Benjamin Vedder의 VESC에 기반을 두지만 보다 개선하였다는 BitWizard ESC(BESC)의 소개입니다.

http://bitwizard.nl/shop/ESC/BitWizard-ESC



The BitWizard ESC is a VESC compatible Brushless DC motor controller. It is based on the VESC by Benjamin Vedder, but has a few interesting differences!

BitWizard ESC는 VESC 호환 Brushless DC 모터 제어기입니다. 이는 Benjamin Vedder의 VESC에 기반을 두었지만 몇 가지 흥미있는 차이점을 갖고 있습니다.


Instead of the single integrated DRV8302 chip, the BESC uses separate gate drivers, opamps and a stepdown converter. This provides slightly better gate drive, as well as a possible upgrade path to larger voltages later on. 

한 개의 집적화된 DRV8302 칩 대신에, BESC는 개별의 게이트 드라이버와 opamp, stepdown 컨버터를 사용합니다. 이는 보다 우수한 게이트 구동 능력을 제공하며, 나중에 더 높은 전압으로의 업데이트 가능성을 제공합니다.


LCD I2C/SPI Interface, with 20x4 LCD


The current design has an SPI connector allowing connection of a "console display". This feature is working right now. Another option for expansion through that connector is an SD card to allow logging your session. This may help in debugging problems with the performance.

현재의 설계는 "console display"의 연결을 위한 SPI 커넥터를 갖습니다. 이 특성은 지금 동작 가능하며 이 커넥터를 통한 또 다른 확장 옵션은 여러분의 session을 기록하게 하는 SD 카드입니다. 이는 성능과 문제점을 디버깅 하는데 도움을 줄 수 있습니다.


BitWizard ESC


Just like VESC, the BESC has(VESC와 같은 점):


    • 60V theoretical MAX. In practise, some margin is required. Running on 14S LIPO is not recommended. 13S is tested works fine.

    • 50A continuous motor current. There is a temperature sensor on the power board that instructs the CPU to reduce the current if things heat up too much.

    • CAN bus connectivity. (currently untested).

    • Uart connectivity.

    • USB connectivity.

    • A connector with "servo pinout" for PWM input, PWM output.

    • Analog input for analog throttles.


Unlike the VESC the BESC has(VESC와 다른 점):


    • A boot button. This allows you to use DFU(dfuse) to reflash your BESC no matter how messed up the firmware has become. No need for an STLINK debugger.

Boot 버튼. 이는 펌웨어가 아무리 뒤죽박죽 될지라도 여러분이 여러분의 BESC를 재기록하기 위해서 DFU(dfuse)를 사용하는 것이 가능하게 합니다. STLINK 디버거에 대한 필요가 없습니다.

    • Separate gate drivers for the FETs.

FET들의 별도의 게이트 드라이버.

    • All unused IOs of the CPU broken out to a testpad.

모든 사용되지 않는 CPU의 IO 핀들은 tespad로 마련되어 있습니다.

    • A separate power board with all the FETs on one side. This allows you to cool the FETs with a heatsink against the PCB. (note: it is of no use to cool the plastic package of the FET. Cooling the PCB is what works.)

한 면에 모든 FET를 실장하는 분리된 power board. 이는 여러분이 heatsink로 FET를 식히는 것이 가능하게 합니다(note: FET의 플라스틱 패키지를 식히는 것이 필요 없다면, PCB를 식히는 것이 동작하는 것입니다).


Separate power board


    • A stepdown from the motor voltage to 12V. This 12V is used for the gate drivers.

모터 전압을 12V로 stepdown. 이 12V는 게이트 드라이버를 위해서 사용됩니다.

    • A stepdown from the 12V intermediate voltage to 5V. This 5V is used as the source for the 3.3V LDO for the CPU, but also provided on serveral connectors as a convenience to power for example a hall-sensor-throttle. On the VESC, they say you can use 1A, on the BESC the limit is slightly lower.

12V 중간 전압을 5V로 stepdown. 이 5V는 CPU의 3.3V LDO를 위한 소스이지만 예를 들어 홀센서 스로틀의 전력공급을 위한 편의를 위해서 몇 개의 커넥터를 제공됩니다. VESC 상에 그들은 여러분이 1A를 사용할 수 있다고 말하지만, BESC에서 한계는 약간 낮습니다.


During development we've had a lot of convenience of the separate power board. This allowed us to test with other FETs and stuff like that. When all is said and done, the IRFS7530 is a quite good fit. I could allow you to buy a version with cheaper FETs, but compared to the cost of the control module it doesn't make much sense to provide cheaper(smaller mosfet) power boards. But if you're interested anyway, get in touch.

개발하는 동안에 우리는 별개의 power board가 많이 편리하였습니다. 이는 우리가 다른 FET와 그와 같은 것과 테스트하는 것이 가능하였습니다. 모든 것을 종합적으로 고려해 보아 IRFS7530가 매우 적합하였습니다. 저는 여러분이 저렴한 FET 버전을 구매하도록 하였을 수 있습니다. 그러나 제어 모듈의 비용과 비교하여 이는 저렴한(작은 mosfet) power board를 제공하는 것이 큰 의미가 있지는 않습니다. 하지만 여러분이 어쨌든 관심있다면 연락주세요.



'Radio Control > ESC' 카테고리의 다른 글

ESC32 V2 메뉴얼 - Firmware Flashing  (0) 2020.04.23
ESC32 V2 메뉴얼 - Connections & Wiring  (0) 2020.04.03
VESC 하드웨어(v4.x) 설정 메뉴얼  (0) 2018.01.24
대표적인 상업용 VESC 구입처  (1) 2018.01.22
PX4ESC의 스펙  (0) 2015.12.08
Posted by Nature & Life


http://www.ti.com/lit/ds/symlink/drv8302.pdf


Features

• 8-V to 60-V Operating Supply Voltage Range 

• 1.7-A Source and 2.3-A Sink Gate Drive Current Capability 

• Bootstrap Gate Driver With 100% Duty Cycle Support 

• 6 or 3 PWM Input Modes 

• Dual Integrated Current Shunt Amplifiers With Adjustable Gain and Offset 

• 3.3-V and 5-V Interface Support 

• Hardware Control Interface 

• Protection Features: 

– Programmable Dead Time Control (DTC) 

– Programmable Overcurrent Protection (OCP) 

– PVDD and GVDD Undervoltage Lockout (UVLO) 

– GVDD Overvoltage Lockout (OVLO) 

– Overtemperature Warning/Shutdown (OTW/OTS) 

– Reported through nFAULT and nOCTW pins


Function Block Diagram


Description 

The DRV8302 is a gate driver IC for three phase motor drive applications. It provides three bridge drivers, each capable of driving two N-channel MOSFETs. The device supports up to 1.7-A source and 2.3-A sink current capability. The DRV8302 can operate off of a single power supply with a wide range from 8-V to 60-V. It uses a bootstrap gate driver architecture with trickle charge circuitry to support 100% duty cycle. The DRV8302 uses automatic hand shaking when the high side or low side MOSFET is switching to prevent current shoot through. Integrated VDS sensing of the high and low side MOSFETs is used to protect the external power stage against overcurrent conditions.

DRV8302는 3상 모터 구동 애플리케이션을 위한 게이트 드라이버 IC입니다. 이는 3개의 브릿지 드라이버를 제공하는데 각각은 2개의 N채널 MOSFET을 구동하는 것이 가능합니다. 이 디바이스는 1.7A까지 source와 2.3A까지 sink 전류 용장성을 갖습니다. DRV8302는 8V - 60V의 넓은 범위의 단독 전원에서 동작할 수 있습니다. 이것은 100% 듀티 싸이클을 지원하기 위해서 trickle charge(작은 전류로 충전하는 완속충전) 회로로 부트스트랩(bootstrap) 게이트 드라이버 구조를 사용합니다. DRV8302는 high side 혹은 low side MOSFET이 스위칭 할 때 전류 shoot through를 방지하기 위해서 automatic hand shaking을 사용합니다. high 그리고 low side MOSFET의 집적화된 VDS 센싱은 과전류 조건에서 외부 전원을 보호하기 위해서 사용됩니다.


The DRV8302 includes two current shunt amplifiers for accurate current measurement. The amplifiers support bi-directional current sensing and provide and adjustable output offset up to 3 V.

DRV8302는 정확한 전류 측정을 위해서 2개의 current shunt amplifier를 내장합니다. 이 amplifier는 양방향 전류 센싱을 지원하고 3V까지 조정할 수 있는 출력 옵셋을 제공합니다.


The DRV8302 also includes an integrated switching mode buck converter with adjustable output and switching frequency. The buck converter can provide up to 1.5 A to support MCU or additional system power needs.

DRV8302는 또한 조정할 수 있는 출력 그리고 스위칭 주파수를 갖는 집적화된 스위칭 모드 buck 컨버터를 포함합니다. 이 buck 컨버터는 MCU 혹은 추가적인 시스템 전원을 지원하기 위해서 1.5A까지 공급할 수 있습니다.


A hardware interface allows for configuring various device parameters including dead time, overcurrent, PWM mode, and amplifier settings. Error conditions are reported through the nFAULT and nOCTW pins.

하드웨어 인터페이스는 dead time, overcurrent, PWM mode 그리고 amplifier 셋팅을 포함한 다양한 디바이스 파라미터들을 설정하는 것을 허용합니다. 에러 조건들은 nFAULT과 nOCTW 핀을 통해서 보고됩니다.



Three-Phase Gate Driver

The half-bridge drivers use a bootstrap configuration with a trickle charge pump to support 100% duty cycle operation. Each half-bridge is configured to drive two N-channel MOSFETs, one for the high-side and one for the low-side. The half-bridge drivers can be used in combination to drive a 3-phase motor or separately to drive various other loads.

Half-bridge 드라이버는 100% 듀티 싸이클 동작을 지원하기 위해서 trickle charge pump을 갖는 부트스트랩(bootstrap) 구성을 사용합니다. 각 half-bridge는 2개의 N채널 MOSFET를 구동하는데, high side에 하나 그리고 low side에 하나입니다. half-bridge 드라이버는 3상 모터를 구동하는 조합으로 혹은 다양한 부하를 독립적으로 구동하기 위해서 사용될 수 있습니다.


The internal dead times are adjustable to accommodate a variety of external MOSFETs and applications. The dead time is adjusted with an external resistor on the DTC pin. Shorting the DTC pin to ground provides the minimum dead time (50 ns). There is an internal hand shake between the high side and low side MOSFETs during switching transitions to prevent current shoot-through.

내부 dead time은 다양한 외부 MOSFET과 애플리케이션과 함께 사용할 수 있도록 조절이 가능합니다. 이 dead time은 DTC 핀에 외부 저항과 함께 조절됩니다. DTC 핀을 GND로 단락시키는 것은 최소 dead time(50 ns)을 갖습니다. 전류 shoot through를 방지하기 위해서 스위칭 천이 시간 동안에 high side와 low side MOSFET 사이에 내부적인 hand shake가 있습니다.


The three-phase gate driver can provide up to 30 mA of average gate driver current. This can support switching frequencies up to 200 kHz when the MOSFET Qg = 25 nC. The high side gate drive will survive negative output from the half-bridge up to –10 V for 10 ns. During EN_GATE low and fault conditions the gate driver keeps the external MOSFETs in high impedance mode. Each MOSFET gate driver has a VDS sensing circuit for overcurrent protection. The sense circuit measures the voltage from the drain to the source of the external MOSFETs while the MOSFET is enabled. This voltage is compared against the programmed trip point to determine if an overcurrent event has occurred. The trip voltage is set through the OC_ADJ pin with a voltage usually set with a resistor divider. The high-side sense is between the PVDD1 and SH_X pins. The low-side sense is between the SH_X and SL_X pins. Ensuring a differential, low impedance connection to the external MOSFETs for these lines helps provide accurate VDS sensing. The DRV8302 provides both cycle-by-cycle current limiting and latch overcurrent shutdown of the external MOSFET through the M_OC pin.

3상 게이트 드라이버는 30mA까지 평균적인 게이트 구동 전류를 공급할 수 있습니다. 이것은 MOSFET Qg = 25nC일 때 스위칭 주파수를 200kHz까지 지원할 수 있습니다. High side 게이트 구동은 10ns 동안 -10V까지 half-bridge로부터 음의 출력을 유지할 수 있습니다. EN_GATE가 low이고 결함 조건인 동안 게이트 드라이버는 외장 MOSFET을 높은 임피던스로 유지합니다. 각 MOSFET 게이트 드라이버는 과전류 보호(overcurrent protection)를 위한 VDS 센싱 회로를 갖습니다. 이 센스 회로는 외장 MOSFET이 가능한 동안 드레인으로부터 소스로의 전압을 측정합니다. 과전류 이벤트가 발생했다면, 이 전압은 과전류가 발생했는지 아닌지 결정하기 위해 프로그램된 트립 포인트(trip point)와 비교합니다. 이 트립 전압은 보통 저항 분배기로 설정된 전압으로 OC_ADJ를 통해서 설정됩니다. High side 센스는 PVDD1 그리고 SH_X 핀이고 low side 센스는 SH_X 그리고 SL_X 핀 사이입니다. 이들 라인들에 대해서 외장 MOSFET으로 differential, low impedance 배선을 확실하게 하는 것은 정확한 VDS 센싱이 가능하게 합니다. DRV8302는 cycle-by-cycle current limiting과 M_OC 핀을 통하여 외장 MOSFET의 latch overcurrent shutdown을 제공합니다.


The DRV8302 allows for both 6-PWM and 3-PWM control through the M_PWM pin.

DRV8302는 M_PWM 핀을 통하여 6-PWM과 3-PWM 제어를 허용합니다.


표 1. 6-PWM mode

표 2. 3-PWM mode

표 3. Gate Driver External Components 


Current Shunt Amplifiers
The DRV8302 includes two high performance current shunt amplifiers to accurate low-side, inline current measurement. The current shunt amplifiers have 2 programmable GAIN settings through the GAIN pin. These are 10, and 40 V/V. They provide output offset up to 3 V to support bidirectional current sensing. The offset is set to half the voltage on the reference pin (REF).
DRV8302는 정확한 low side, 인라인 전류 측정을 위해서 2개의 고성능 current shunt amplifier를 포함합니다. Current shunt amplifier는 GAIN 핀을 통해서 2개의 프로그램 가능한 GAIN 셋팅을 할 수 있습니다. 이것은 10과 40 V/V입니다. 이들은 양방향 전류 센싱을 지원하기 위해서 3V까지 출력 옵셋을 제공합니다. 이 옵셋은 reference 핀(REF) 상에 전압의 반으로 설정됩니다.
To minimize DC offset and drift overtemperature, a calibration method is provided through either the DC_CAL pin. When DC calibration is enabled, the device shorts the input of the current shunt amplifier and disconnect the load. DC calibration can be done at any time, even during MOSFET switching, since the load is disconnected. For the best results, perform the DC calibration during the switching OFF period, when no load is present, to reduce the potential noise impact to the amplifier.
DC 옵셋과 overtemperature 드리프트를 최소화하기 위해서 calibration 방법이 DC_CAL 핀을 통해서 제공됩니다. DC calibration이 enable 될 때, 디바이스는 current shunt amplifier의 입력을 단락하고 부하를 끊습니다. DC calibration은 부하가 끊어졌기 때문에 MOSFET 스위칭하는 동안조차도 어느 때이든 할 수 있습니다. 가장 좋은 결과를 위해서 부하가 없을 때 앰프로 잠재적인 잡음 영향을 줄이기 위해서 스위칭 OFF 구간에 DC calibration을 실행하세요.

The output of current shunt amplifier can be calculated as:
Current shunt amplifier의 출력은 다음과 같이 계산될 수 있습니다:

where 

• VREF는 reference 전압(REF pin)입니다
• G는 앰프의 이득입니다(10 or 40 V/V) 
• SNX와 SPx는 채널 x (1)의 입력입니다

SPx should connect to resistor ground for the best common mode rejection.
SPx는 가장 좋은 common mode rejection을 위해서 저항 GND로 연결되어야 합니다.

Figure 4 shows current amplifier simplified block diagram.
그림 4는 current amplifier의 간단화된 블럭 다이아그램입니다.

그림 4. Current Shunt Amplifier Simplified Block Diagram

Buck Converter

The DRV8302 uses an integrated TPS54160 1.5-A, 60-V, step-down DC-DC converter. Although integrated in the same device, the buck converter is designed completely independent of the rest of the gate driver circuitry. Because the buck converter can support external MCU or other external power need, the independency of buck operation is crucial for a reliable system; this gives the buck converter minimum impact from gate driver operations. Some examples are: when gate driver shuts down due to any failure, the buck still operates unless the fault is coming from the buck itself. The buck keeps operating at much lower PVDD of 3.5 V, assuring the system has a smooth power-up and power-down sequence when gate driver is not able to operate due to a low PVDD.

DRV8302는 집적화된 TPS54160 1.5A, 60V, step-down DC-DC 컨버터를 사용합니다. 비록 동일한 디바이스에 집적하였을지라도 buck 컨버터는 게이트 드라이버 회로의 나머지에 완전하게 독립적으로 설계되었습니다. buck 컨버터는 외장 MCU 혹은 다른 외장 전원 요구를 지원할 수 있습니다. buck 동작의 독립성은 신뢰성 있는 시스템을 위해서 결정적입니다: 이것은 게이트 구동 동작으로부터 buck 컨버터에 최소 충격을 줍니다. 일부 예제는 다음과 같습니다: 게이트 드라이버는 어떤 실수로 셧다운 되었을 때 buck는 만약 그 결함이 buck 자체로부터 오지 않는 한 여저히 동작할 것입니다. buck는 훨씬 낮은 3.5V PVDD에서도 동작을 유지합니다. 이는 게이트 드라이버가 낮은 PVDD로 인해 동작이 불가능할 때 시스템이 부드러운 power-up 그리고 power-down 시퀀스를 보장합니다.


For proper selection of the buck converter external components, see the data sheet, TPS54160 1.5-A, 60-V, Step-Down DC/DC Converter With Eco-mode™, SLVSB56

Buck 컨버터의 외장 부품의 적당한 선택을 위해서 데이터시트를 참조하세요. TPS54160 1.5-A, 60-V, Step-Down DC/DC Converter With Eco-mode™, SLVSB56.


The buck has an integrated high-side N-channel MOSFET. To improve performance during line and load transients the device implements a constant frequency, current mode control which reduces output capacitance and simplifies external frequency compensation design.

Buck는 집적화된 high-side N채널 MOSFET을 갖습니다. 라인 그리고 부하 과도 응답 동안에 성능을 개선하기 위해서 디바이스는 일정한 주파수, 출력 커패시턴스를 감소시키고 외부 주파수 보상 설계를 간단화하는 current mode 제어를 구현합니다.


The wide switching frequency of 300 kHz to 2200 kHz allows for efficiency and size optimization when selecting the output filter components. The switching frequency is adjusted using a resistor to ground on the RT_CLK pin.

300 - 2200kHz의 넓은 스위칭 주파수는 출력 필터 부품들을 선택할 때 효율과 사이즈 최적화를 허용합니다. 스위칭 주파수는 RT_CLK 핀에 GND로 저항을 사용하여 조정될 수 있습니다.


The device has an internal phase lock loop (PLL) on the RT_CLK pin that is used to synchronize the power switch turn on to a falling edge of an external system clock. 

이 디바이스는 RT_CLK 상에 내부적인 phase lock loop(PLL)을 가지며 이 핀은 외부 시스템 클럭의 falling edge에 전력 스위치가 켜지도록 동기화하기 위해서 사용됩니다.


The buck converter has a default start-up voltage of approximately 2.5 V. The EN_BUCK pin has an internal pullup current source that can be used to adjust the input voltage undervoltage lockout (UVLO) threshold with two external resistors. In addition, the pullup current provides a default condition. When the EN_BUCK pin is floating the device will operate. The operating current is 116 µA when not switching and under no load. When the device is disabled, the supply current is 1.3 µA.

Buck 컨버터는 약 2.5V의 디폴트 start-up 전압을 갖습니다. EN_BUCK 핀은 내부의 pullup 전류원을 가지며 이는 2개의 외장 저항으로 input voltage undervoltage lockout(UVLO) threshold를 조정하기 위해서 사용될 수 있습니다. 추가로, pullup 전류는 디폴트 조건을 제공합니다. EN_BUCK 핀이 플로팅(floating)일 때 디바이스는 동작할 것입니다. 동작 전류는 스위칭 하지 않고 부하 없는 조건에서 116 µA입니다. 디바이스가 disable 될 때 supply current는 1.3 µA입니다.


The integrated 200-mΩ high-side MOSFET allows for high-efficiency power supply designs capable of delivering 1.5 A of continuous current to a load. The bias voltage for the integrated high side MOSFET is supplied by a capacitor on the BOOT to PH pin. The boot capacitor voltage is monitored by an UVLO circuit that turns the high side MOSFET off when the boot voltage falls below a preset threshold. The buck can operate at high duty cycles because of the boot UVLO. The output voltage can be stepped down to as low as the 0.8-V reference.

집적화된 200mΩ high-side MOSFET은 부하에 연속적인 1.5A 전류를 공급하는 고효율 전원 설계가 가능하도록 합니다. 집적화된 high side MOSFET을 위한 바이어스 전압은 BOOT에서 PH 핀으로 커패시터에 의해서 공급됩니다. 부트 커패시터 전압은 UVLO 회로에 의해서 모니터되고 이 UVLO 회로는 부트 전압이 미리 설정한 threshold 아래로 떨어질 때 high side MOSFET을 off 합니다. Buck는 boot UVLO로 인하여 높은 듀티 싸이클에서 동작할 수 있습니다. 출력 전압은 0.8V reference 만큼 낮게 떨어집니다.


The BUCK has a power good comparator (PWRGD) which asserts when the regulated output voltage is less than 92% or greater than 109% of the nominal output voltage. The PWRGD pin is an open-drain output that deasserts when the VSENSE pin voltage is between 94% and 107% of the nominal output voltage, allowing the pin to transition high when a pullup resistor is used.

Buck는 우수한 비교기(PWRGD)를 가지며, 이는 안정화된 출력 전압이 정상적인 출력 전압보다 92% 작거나 혹은 109% 이상일 때 활성화됩니다. PWRGD 핀은 오픈 드레인 출력으로 VSENSE 핀 전압이 정상적인 출력 전압의 94%와 107% 사이일 때 비활성화됩니다. 즉, pullup 저항이 사용될 때 핀이 high로 가는 것을 허용합니다.


The BUCK minimizes excessive output overvoltage (OV) transients by taking advantage of the OV power good comparator. When the OV comparator is activated, the high-side MOSFET is turned off and masked from turning on until the output voltage is lower than 107%.

Buck은 overvoltage(OV) power good 비교기의 사용으로 과잉 출력 overvoltage 과도 응답을 최소화합니다. OV 비교기가 활성화되었을때 high-side MOSFET은 꺼지고 출력 전압이 107%보다 낮아질 때까지 켜지는 것으로부터 마스크됩니다.


The SS_TR (slow start/tracking) pin is used to minimize inrush currents or provide power supply sequencing during power-up. A small value capacitor should be coupled to the pin to adjust the slow start time. A resistor divider can be coupled to the pin for critical power supply sequencing requirements. The SS_TR pin is discharged before the output powers up. This discharging ensures a repeatable restart after an overtemperature fault,

SS_TR(slow start/tracking) 핀은 inrush current를 최소화하고 혹은 power-up 동안에 power supply sequencing을 제공하기 위해서 사용됩니다. 작은 값을 갖는 커패시터는 slow start time을 맞추기 위해서 그 핀으로 연결되어야 합니다. 저항 분배기는 중대한 power supply sequencing 요구조건을 위해서 그 핀에 연결될 수 있습니다. SS_TR 핀은 출력이 power-up 전에 방전됩니다. 이 방전은 overtemperature 문제 후에 반복적인 재시작을 확실하게 합니다.


The BUCK, also, discharges the slow-start capacitor during overload conditions with an overload recovery circuit. The overload recovery circuit slow-starts the output from the fault voltage to the nominal regulation voltage once a fault condition is removed. A frequency foldback circuit reduces the switching frequency during start-up and overcurrent fault conditions to help control the inductor current.

Buck은 또한 overload recovery circuit의 사용으로 과부하 조건 동안에 slow-start 커패시터를 방전합니다. Overload recovery circuit는 결함 조건이 일단 제거된 후에는 결함있는 전압을 정상적인 안정된 전압으로 출력을 천천히 시작합니다. Frequency foldback circuit은 start-up 그리고 인덕터 전류를 제어하는데 돕는 과전류 결함 조건 동안 스위칭 주파수를 감소시킵니다.


표 4. Buck Regulator External Components


Protection Features

The DRV8302 provides a broad range of protection features and fault condition reporting. The DRV8302 has undervoltage and overtemperature protection for the IC. It also has overcurrent and undervoltage protection for the MOSFET power stage. In fault shut down conditions all gate driver outputs is held low to ensure the external MOSFETs are in a high impedance state.

DRV8302는 광대한 범위의 보호 특성과 결함 조건 리포팅을 제공합니다. DRV8302는 IC에 대해서 undervoltage와 overtemperature protection을 갖습니다. 이것은 또한 MOSFET 파워 스테이지를 위해서 overcurrent와 undervoltage protection을 갖습니다. 결함으로 인한 셧다운 조건에서 모든 게이트 드라이버 출력은 외부 MOSFET이 높은 임피던스 상태에 있기를 확실히 하기 위해 'low'를 유지합니다.


1. Overcurrent Protection (OCP) and Reporting

To protect the power stage from damage due to excessive currents, VDS sensing circuitry is implemented in the DRV8302. Based on the RDS(on) of the external MOSFETs and the maximum allowed IDS, a voltage threshold can be determined to trigger the overcurrent protection features when exceeded. The voltage threshold is programmed through the OC_ADJ pin by applying an external reference voltage with a DAC or resistor divider from DVDD. Overcurrent protection should be used as a protection scheme only; it is not intended as a precise current regulation scheme. There can be up to a 20% tolerance across channels for the VDS trip point.

과잉 전류로 인한 손상으로부터 파워 스테이지를 보호하기 위해서, VDS 센싱 회로가 DRV8302에 구현되었습니다. 외장 MOSFET의 RDS(on)과 최대 허용된 IDS에 근거하여, 전압 한계(voltage threshold)는 과잉되었을 때 overcurrent protection 기능을 활성화하기 위해서 결정될 수 있습니다. 이 전압 한계는 OC_ADJ를 통하여 DAC 혹은 DVDD로부터 저항 분배기를 사용하여 외부 기준 전압(reference voltage)을 공급하는 것에 의해서 프로그램됩니다. Overcurrent protection은 단지 보호용으로서 사용되어야만 합니다; 이것은 정밀한 전류 안정화 회로로써 계획되지는 않았습니다. VDS 트립 포인트는 채널에 걸린 전압의 허용오차가 20%까지 될 수 있습니다.


The VDS sense circuit measures the voltage from the drain to the source of the external MOSFET while the MOSFET is enabled. The high-side sense is between the PVDD and SH_X pins. The low-side sense is between the SH_X and SL_X pins. Ensuring a differential, low impedance connection to the external MOSFETs for these lines helps provide accurate VDS sensing.

VDS 센스 회로는 외장 MOSFET이 enable 된 동안 드레인으로부터 소스로의 전압을 측정합니다. High-side 센스는 PVDD와 SH_X 핀 사이입니다. low-side 센스는 SH_X와 SL_X 핀 사이입니다. 이들 라인들에 대해서 외장 MOSFET로의 차분의, 낮은 임피던스 배선을 확실하게 하는 것이 정확한 VDS 센싱을 제공합니다.


There are two different overcurrent modes that can be set through the M_OC pin.

2개의 서로 다른 overcurrent 모드가 있으며 이는 M_OC 핀으로 설정될 수 있습니다.


1.1 Current Limit Mode (M_OC = LOW)

In current limit mode the devices uses current limiting instead of device shutdown during an overcurrent event.

전류 제한 모드(current limit mode)에서 디바이스는 overcurrent 이벤트 동안에 디바이스 셧다운 대신에 전류 제한을 사용합니다.


After the overcurrent event, the MOSFET in which the overcurrent was detected in will shut off until the next PWM cycle. The overcurrent event will be reported through the nOCTW pin. The nOCTW pin will be held low for a maximum 64 µs period (internal timer) or until the next PWM cycle. If another overcurrent event is triggered from another MOSFET, during a previous overcurrent event, the reporting will continue for another 64 µs period (internal timer will restart) or until both PWM signals cycle.

Overcurrent 이벤트 후에 과전류가 감지된 MOSFET은 다음 PWM 싸이클까지 커질 것입니다. Overcurrent 이벤트는 nOCTW 핀으로 보고될 것입니다. nOCTW 핀은 최대 64µs 기간(내부 타이머) 동안 혹은 다음 PWM 싸이클까지 'low'로 유지될 것입니다. 만일 또 다른 overcurrent 이벤트가 이전 overcurrent 이벤트 동안에 다른 MOSFET에서 발생하면, 리포팅은 또 다른 64 µs기간(내부 타이머는 다시 시작할 것입니다) 혹은 두 PWM 신호 싸이클까지 계속될 것입니다.


1.2 OC Latch Shutdown Mode

When an overcurrent event occurs, both the high-side and low-side MOSFETs will be disabled in the corresponding half-bridge. The nFAULT pin will latch until the fault is reset through a quick EN_GATE reset pulse.

Overcurrent 이벤트가 발생했을 때 high-side와 low-side MOSFET 모두 대응하는 half-bridge에서 disable 시킬 것입니다. nFAULT 핀은 빠른 EN_GATE reset 펄스로 fault가 reset 될 때까지 latch 될 것입니다.

 

2. OC_ADJ 

When external MOSFET is turned on, the output current flows through the on resistance, RDS(on) of the MOSFET, which creates a voltage drop VDS. The over current protection event will be enabled when the VDS exceeds a preset value. The voltage on OC_ADJ pin will be used to pre-set the OC tripped value. The OC tripped value IOC has to meet following equations:

외장 MOSFET이 켜졌을 때, 출력 전류는 MOSFET의 저항, RDS(on)을 통하여 흐릅니다. 이것은 VDS의 전압 강하를 만듭니다. Over current protection 이벤트는 VDS가 미리 설정된 값을 초과할 때 enable 될 것입니다. OC_ADJ 핀의 전압은 OC tripped 값을 미리 설정하기 위해서 사용될 것입니다. OC tripped 값 IOC는 다음의 방정식을 만족해야 합니다.

where 

• R1 + R2 ≥ 1 KΩ 

• DVDD = 3.3 V


Connect OC_ADJ pin to DVDD to disable the over-current protection feature.

Over-current protection 기능을 disable 하기 위해서 OC_ADJ 핀을 DVDD에 연결하세요.



3. Undervoltage Protection (UVLO)
To protect the power output stage during start-up, shutdown, and other possible undervoltage conditions, the DRV8302 provides undervoltage protection by driving the gate drive outputs (GH_X, GL_X) low whenever PVDD or GVDD are below their undervoltage thresholds (PVDD_UV/GVDD_UV). This will put the external MOSFETs in a high impedance state.
Start-up, 셧다운 그리고 다른 가능한 undervoltage 조건 동안에 파워 출력 스테이지를 보호하기 위해서, DRV8302는 PVDD 혹은 GVDD가 그들의 undervoltage 한계치(PVDD_UV/GVDD_UV) 아래에 있을 때마다 게이트 구동 출력(GH_X, GL_X)을 'low'로 구동하는 것에 의해서 undervoltage protection을 제공합니다.

A specific PVDD1 undervoltage transient brownout from 13 to 15 µs can cause the DRV8302 to become unresponsive to external inputs until a full power cycle. The transient condition consists of having PVDD1 greater than the PVDD_UV level and then PVDD1 dropping below the PVDD_UV level for a specific period of 13 to 15 µs. Transients shorter or longer than 13 to 15 µs will not affect the normal operation of the undervoltage protection. Additional bulk capacitance can be added to PVDD1 to reduce undervoltage transients.
13-15µs의 특별한 PVDD1 undervoltage 과도 응답 정전은 DRV8302가 완전한 전력 싸이클까지 외부 입력에 반응하지 않게 합니다. 이 과도 응답 조건은 PVDD1이 PVDD_UV 레벨보다 크고 그리고 나서 PVDD1가 13-15 µs의 특별한 기간 동안 PVDD_UV 레벨 아래로 떨어지는 것으로 구성됩니다. 13-15µs 보다 짧거나 긴 과도 응답은 undervoltage protection의 정상 동작에 영향을 주지 않을 것입니다. 추가적인 벌크(bulk) 커패시턴스는 undervoltage 과도 응답을 줄이기 위해서 PVDD1으로 더해질 수 있습니다.

4. Overvoltage Protection (GVDD_OV)
The device will shut down both the gate driver and charge pump if the GVDD voltage exceeds the GVDD_OV threshold to prevent potential issues related to the GVDD pin or the charge pump (For example, short of external GVDD cap or charge pump). The fault is a latched fault and can only be reset through a reset transition on the EN_GATE pin.
디바이스는 GVDD 핀 혹은 charge pump(예를 들어, 외장 GVDD 커패시터 혹은 charge pump의 단락)에 관련된 잠재적인 이슈를 방지하기 위해서 만일 GVDD가 GVDD_OV의 한계치를 초과하면, 게이트 드라이버와 charge pump를 셧다운할 것입니다. fault는 latch 되고 EN_GATE 핀 상에 reset transition을 통해서만 리셋 될 수 있습니다.

5. Overtemperature Protection
2-level overtemperature 감지 회로가 구현되었습니다:
• Level 1: overtemperature 경고 (OTW) 
OTW는 nOCTW 핀을 통해서 보고됩니다.
• Level 2: overtemperature (OT) latched shut down of gate driver and charge pump (OTSD_GATE) 
결함은 nFAULT 핀으로 보고될 것입니다. 이것은 latch 된 셧다운이어서 게이트 드라이버는 OT 조건이 더 이상 존재하지 않을지라도 자동적으로 회복되지 않을 것입니다. 온도가 미리 설정한 값, tOTSD_CLR 아래로 내려간 후에 정상 동작으로 게이트 드라이버를 회복하기 위해서 핀을 통한 EN_GATE reset이 요구됩니다.

6. Fault and Protection Handling
The nFAULT pin indicates an error event with shut down has occurred such as over-current, overtemperature, overvoltage, or undervoltage. Note that nFAULT is an open-drain signal. nFAULT goes high when gate driver is ready for PWM signal (internal EN_GATE goes high) during start-up.
nFAULT 핀은 over-current, overtemperature, overvoltage 혹은 undervoltage 같은 셧다운이 발생했을 때 오류 이벤트를 지시합니다. nFAULT는 오프 드레인 신호임을 주의하세요. nFAULT는 start-up 동안 게이트 드라이버가 PWM 신호(내부적인 EN_GATE는 'high'로 감)를 위해서 준비되었을 때 'high'로 올라갑니다.

The nOCTW pin indicates an overtemperature or over current event that is not necessarily related to shut down.
nOCTW 핀은 셧다운에 관련되어 필요하지 않은 overtemperature 혹은 over current 이벤트를 지시합니다.

Following is the summary of all protection features and their reporting structure:
다음은 모든 보호 특성과 리포팅 구조의 요약입니다:

표 5. Fault and Warning Reporting and Handling


Device Functional Modes
1. EN_GATE
EN_GATE low is used to put gate driver, charge pump, current shunt amplifier, and internal regulator blocks into a low-power consumption mode to save energy. The device will put the MOSFET output stage to high impedance mode as long as PVDD is still present.
EN_GATE low는 게이트 드라이버, charge pump, current shunt amplifier 그리고 내부 regulator 블록의 에너지를 절약하기 위해서 저파워 소비 모드로 놓는데 사용됩니다. 이 디바이스는 PVDD가 여전히 존재하는 한 MOSFET 출력 스테이지를 하이 임피던스 모드에 놓을 것입니다.

When the EN_GATE pin goes low to high, it goes through a power-up sequence, and enable gate driver, current amplifiers, charge pump, internal regulator, and so forth and reset all latched faults related to gate driver block. All latched faults can be reset when EN_GATE is toggled after an error event unless the fault is still present.
EN_GATE 핀이 low에서 high로 갈 때, 이것은 power-up 시퀀스, 그리고 게이트 드라이버, current amplifier, charge pump, 내부 regulator 등이 활성화되고, 게이트 드라이버 블럭에 관련된 모든 래치된 fault들은 리셋됩니다. 모든 래치된 fault들은 fault가 여전히 존재하지 않는 한 에러 이벤트 후에 EN_GATE가 토글될 때 리셋될 것입니다.

When EN_GATE goes from high to low, it will shut down gate driver block immediately, so gate output can put external FETs in high impedance mode. It will then wait for 10 µs before completely shutting down the rest of the blocks. A quick fault reset mode can be done by toggling EN_GATE pin for a very short period (less than 10 µs). This will prevent the device from shutting down the other functional blocks such as charge pump and internal regulators and bring a quicker and simple fault recovery. To perform a full reset, EN_GATE should be toggled for longer than 20 µs. This allows for all of the blocks to completely shut down and reach known states. An EN_GATE reset pulse (high → low → high) from 10 to 20 µs should not be applied to the EN_GATE pin. The DRV8301 has a transition area from the quick to full reset modes that can cause the device to become unresponsive to external inputs until a full power cycle. An RC filter can be added externally to the pin if reset pulses with this period are expected to occur on the EN_GATE pin.
EN_GATE가 high에서 low로 갈 때, 이것은 즉시 게이트 드라이버 블럭을 셧다운할 것입니다. 그래서 게이트 출력은 외장 FET들이 하이 임피던스 모드로 갈 수 있게 합니다. 이것은 그리고 블럭의 나머지를 완전하게 셧다운하기 전에 10us를 기다릴 것입니다. 빠른 fault 리셋 모드는 EN_GATE를 토글하여 매우 짧은 시간(<10us) 동안에 끝낼 수 있습니다. 이것은 디바이스가 charge pump 그리고 내부 regulator들과 같은 다른 기능 블럭을 셧다운하는 것을 방지하고 빠르고 간단한 fault 회복을 할 것입니다. 완전한 리셋을 수행하기 위해서, EN_GATE는 20us 보다 긴 시간 동안 토글되어야만 합니다. 이것은 모든 블럭들이 완전하게 셧다운하고 알려진 상태로 도달하게 허용합니다. 10에서 20us의 EN_GATE 리셋 펄스(high → low → high)는 EN_GATE 핀에 적용되지 않아야만 합니다. DRV8301는 디바이스가 완전한 파워 싸이클까지 외부 입력에 반응하지 않게 되는 것을 유발한 빠르고 완전한 리셋 모드의 transition area를 갖습니다. 만일 이 구간에 리셋 펄스가 EN_GATE 핀에 발생할 것으로 기대된다면 RC 필터가 핀에 외부에서 추가될 수 있습니다.

One exception is to reset a GVDD_OV fault. A quick EN_GATE quick fault reset will not work with GVDD_OV fault. A complete EN_GATE with low level holding longer than 20 µs is required to reset GVDD_OV fault. TI highly recommends inspecting the system and board when GVDD_OV occurs.
한가지 예외는 GVDD_OV fault를 리셋하는 것입니다. 빠른 EN_GATE fault 리셋은 GVDD_OV fault와 함께 동작하지 않을 것입니다. 20us보다 길게 low level을 유지하는 완전한 EN_GATE는 GVDD_OV fault를 리셋하기 위해서 요구됩니다. TI는 GVDD_OV가 발생할 때 시스템과 보드를 조사하는 것을 강력하게 권고합니다.

7.4.2 DTC
Dead time can be programmed through DTC pin. A resistor should be connected from DTC to ground to control the dead time. Dead time control range is from 50 ns to 500 ns. Short DTC pin to ground provides minimum dead time (50 ns). Resistor range is 0 to 150 kΩ. Dead time is linearly set over this resistor range. Current shoot through prevention protection will be enabled in the device all time independent of dead time setting and input mode setting.
Dead time은 DTC 핀으로 프로그램될 수 있습니다. 저항은 dead time을 제어하기 위해서 DTC로부터 GND로 연결되어야 합니다. Dead time 제어 범위는 50ns에서 500ns입니다. DTC 핀의 GND와 단락은 최소 dead time(50 ns)를 공급합니다. 저항 범위는 0 ~ 150 kΩ입니다. Dead time은 이 저항 범위를 따라 선형적으로 설정됩니다. 전류 shoot through prevention 보호는 디바이스에서 항상 dead time 설정과 input mode 설정에 상관없이 활성화될 것입니다.



'Flight Controller 이해 > 부품' 카테고리의 다른 글

WS2811를 이용한 color LED 구동  (0) 2018.03.09
Posted by Nature & Life


출처 : By Benjamin Vedder

http://vedder.se/2015/01/vesc-open-source-esc/

http://vesc-project.com/

https://github.com/vedderb/bldc(bldc 펌웨어 설계) : 모든 하드웨어 버젼에 사용

https://github.com/vedderb/bldc-hardware(bldc 하드웨어 설계) : v4.12까지

http://vesc-project.com/node/311(bldc 하드웨어 설계) : v6.4부터

https://github.com/vedderb/bldc-tool(bldc-tool 설계) : v2.18까지

https://github.com/vedderb/vesc_tool(vesc-tool 설계, bldc-tool의 새로운 버젼)

https://github.com/vedderb/bldc-logger(bldc-logger 설계)

https://github.com/vedderb(기타 프로젝터 설계)


VESC – Open Source ESC

Posted on January 7, 2015 and Post updated 2016-01-22


About this project

I have made many updates to my custom motor controller recently and the old post is getting confusing with notes and updates, I decided to write a new post about it that hopefully is more clear, more complete and easier to follow. This might sound a bit ambitions, but my goal is to make the best ESC available. I really enjoy sharing knowledge, so I want to keep all the hardware and software open.

저는 최근에 제 모터 제어기에 많은 개선을 해왔습니다 그리고 이전에 게시된 내용은 설명과 업데이트에서 혼선을 일의키고 있고, 저는 좀더 분명하고 좀더 완전하며 좀더 이해하기 쉽게 하기 위해서 새로운 게시글을 작성하기로 하였습니다. 이는 약간 애매할 수도 있지만 저의 분명한 목표는 가장 좋은 ESC를 만드는 것입니다. 저는 사실 지식을 공유하는 것을 즐깁니다. 따라서 저는 모든 하드웨어와 소프트웨어를 공개하기를 원합니다.


This is an overview of the schematic (download a complete PDF here):


This is the front of the PCB:


The back:


3D render from KiCad:


Some screenshots of the configuration GUI (BLDC Tool):


Resources

All files are on github to keep them up to date, so check these links on a regular basis:


Related posts


Forums

Because information about the VESC is scattered all over the internet and a lot of information is in email conversations with me, I have created a forum dedicated to the VESC here.

VESC에 대한 정보는 인터넷 상에서 퍼져있기 때문에 많은 정보는 저와 이메일로 대화합니다. 저는 여기에 VESC에 대한 포럼을 만들었습니다.


Live Chat

I have created an IRC channel on freenode where you can live chat with me and other users about VESC and my other projects. Feel free to join: http://webchat.freenode.net/?channels=vedder


Features

    • 하드웨어와 소프트웨어는 오픈소스입니다. 다양한 CPU 리소스가 남았기 때문에 사용자 최적화는 무한합니다.

    • STM32F4 microcontroller.

    • DRV8302 MOSFET driver / buck converter / current shunt amplifier.

    • IRFS7530 MOEFETs (other FETs in the same package also fit).

    • DRV8302에 집적화된 buck converter로부터 외부 전자장치를 위한 5V 1A 출력.

    • Voltage: 8V – 60V (Safe for 3S to 12S LiPo).

    • Current: 수 초동안 250A까지 혹은 온도와 PCB 주변에 공기 순환에 의존하여 연속적인 약 50A.

    • Sensored and sensorless FOC wich auto-detection of all motor parameters is implemented since FW 2.3.

    • Firmware based on ChibiOS/RT.

    • PCB size: slightly less than 40mm x 60mm.

    • Current and voltage measurement on all phases.

    • Regenerative braking.

    • DC motors are also supported.

    • Sensored or sensorless operation.

    • A GUI with lots of configuration parameters.

    • Adaptive PWM frequency to get as good ADC measurements as possible.

    • RPM-based phase advance (or timing/field weakening).

    • Good start-up torque in the sensorless mode (and obviously in the sensored mode as well).

    • The motor is used as a tachometer, which is good for odometry on modified RC cars.

    • Duty-cycle control(voltage control), speed control or current control.

    • Seamless 4-quadrant operation.

    • Interface to control the motor: PPM signal (RC servo), analog, UART, I2C, USB  or CAN-bus.

    • Wireless wii nunchuk (Nyko Kama) control through the I2C port. This is convenient for electric skateboards.

    • Consumed and regenerated amp-hour and watt-hour counting.

    • Optional PPM signal output. Useful when e.g. controlling an RC car from a raspberry pi or an android device.

    • USB포트는 모뎀 프로파일을 사용합니다. 그래서 안드로이드 디바이스는 루팅 없이 모터 제어기에 연결할 수 있습니다. 서보 출력, 주행거리계(odometry) 그리고 여분의 ADC 입력(센서를 위하여 사용될 수 있슴) 때문에 이것은 안드로이드( 혹은 raspberry pi)로 제어되는 RC 카를 개조하기에 완벽합니다.

    • Adjustable protection against

        • Low input voltage

        • High input voltage

        • High motor current

        • High input current

        • High regenerative braking current (separate limits for the motor and the input)

        • Rapid duty cycle changes (ramping)

        • High RPM (separate limits for each direction).

    • 전류 한계에 도달했을 때 모터가 동작을 유지하면서 soft back-off 전략이 사용됩니다. 만일 전류가 너무 높다면, 모터는 완전하게 OFF 됩니다.

    • RPM limit은 또한 soft back-off 전략을 갖습니다.

    • Commutation은 모터 속도가 급격하게 변동할 때 조차도 완벽하게 동작합니다. 이는 이전 속도에 근거하여 지연을 추가하는 것 대신에 zero crossing 후에 자속을 적분한다는 사실 때문입니다. 

    • 제어기가 커진 동안에 모터가 회전할 때 commutation과 회전방향은 추적됩니다. 같은 속도를 얻기 위해서 듀티 싸이클이 또한 계산됩니다. 이는 모터가 이미 회전중일 때 부드러운 출발을 얻게 합니다. 

    • 모든 하드웨어는 센서 없는 자속 기준 제어(field-oriented control; FOC)를 위해서 준비되었습니다. 소프트웨어를 작성하는 것이 남아있습니다. 그러나 저는 FOC가 조금 정숙하게 동작한다는 것 외에 저 인덕턱스 고속 모터에 대하여 많은 이득을 갖는 것인지 아닌지 확신하지 못합니다. 센서 그리고 센서 없는 FOC는 FW 2.3 이후에 완전하게 구현되었습니다.



Posted by Nature & Life